
Introduction  
to Deep Learning 
Using R

A Step-by-Step Guide to  
Learning and Implementing  
Deep Learning Models Using R
—
Taweh Beysolow II



Introduction to Deep 
Learning Using R

A Step-by-Step Guide to  
Learning and Implementing  

Deep Learning Models Using R

Taweh Beysolow II



Introduction to Deep Learning Using R 

Taweh Beysolow II     
San Francisco, California, USA   

ISBN-13 (pbk): 978-1-4842-2733-6  ISBN-13 (electronic): 978-1-4842-2734-3
DOI 10.1007/978-1-4842-2734-3

Library of Congress Control Number: 2017947908

Copyright © 2017 by Taweh Beysolow II 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole 
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical 
way, and transmission or information storage and retrieval, electronic adaptation, computer 
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the 
date of publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Technical Reviewer: Somil Asthana
Coordinating Editor: Sanchita Mandal
Copy Editor: Corbin Collins
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global 

Distributed to the book trade worldwide by Springer Science+Business Media New York, 
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)  
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress 
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business 
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit  
http://www.apress.com/rights-permissions. 

Apress titles may be purchased in bulk for academic, corporate, or promotional use.  
eBook  versions and licenses are also available for most titles. For more information, reference 
our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is 
available to readers on GitHub via the book's product page, located at the following link:

https://github.com/TawehBeysolowII/AnIntroductionToDeepLearning.

For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
https://github.com/TawehBeysolowII/AnIntroductionToDeepLearning
http://www.apress.com/source-code


iii

Contents at a Glance

About the Author ���������������������������������������������������������������������������� xiii

About the Technical Reviewer ��������������������������������������������������������� xv

Acknowledgments ������������������������������������������������������������������������� xvii

Introduction ������������������������������������������������������������������������������������ xix

 ■Chapter 1: Introduction to Deep Learning �������������������������������������� 1

 ■Chapter 2: Mathematical Review ������������������������������������������������� 11

 ■Chapter 3: A Review of Optimization and Machine Learning ������� 45

 ■Chapter 4: Single and Multilayer Perceptron Models ������������������� 89

 ■Chapter 5: Convolutional Neural Networks (CNNs) ��������������������� 101

 ■Chapter 6: Recurrent Neural Networks (RNNs)��������������������������� 113

 ■ Chapter 7: Autoencoders, Restricted Boltzmann Machines,  
and Deep Belief Networks ���������������������������������������������������������� 125

 ■Chapter 8: Experimental Design and Heuristics ������������������������� 137

 ■Chapter 9: Hardware and Software Suggestions ������������������������ 167

 ■Chapter 10: Machine Learning Example Problems ��������������������� 171

 ■Chapter 11: Deep Learning and Other Example Problems ���������� 195

 ■Chapter 12: Closing Statements ������������������������������������������������� 219

Index ���������������������������������������������������������������������������������������������� 221



v

Contents

About the Author ���������������������������������������������������������������������������� xiii

About the Technical Reviewer ��������������������������������������������������������� xv

Acknowledgments ������������������������������������������������������������������������� xvii

Introduction ������������������������������������������������������������������������������������ xix

 ■Chapter 1: Introduction to Deep Learning �������������������������������������� 1

Deep Learning Models ���������������������������������������������������������������������������� 3

Single Layer Perceptron Model (SLP) ����������������������������������������������������������������������� 3

Multilayer Perceptron Model (MLP) �������������������������������������������������������������������������� 4

Convolutional Neural Networks (CNNs) �������������������������������������������������������������������� 5

Recurrent Neural Networks (RNNs) �������������������������������������������������������������������������� 5

Restricted Boltzmann Machines (RBMs) ������������������������������������������������������������������ 6

Deep Belief Networks (DBNs) ����������������������������������������������������������������������������������� 6

Other Topics Discussed ��������������������������������������������������������������������������� 7

Experimental Design ������������������������������������������������������������������������������������������������� 7

Feature Selection ������������������������������������������������������������������������������������������������������ 7

Applied Machine Learning and Deep Learning ��������������������������������������������������������� 7

History of Deep Learning ������������������������������������������������������������������������������������������ 7

Summary ������������������������������������������������������������������������������������������������� 9

 ■Chapter 2: Mathematical Review ������������������������������������������������� 11

Statistical Concepts������������������������������������������������������������������������������� 11

Probability ��������������������������������������������������������������������������������������������������������������� 11

And vs� Or ��������������������������������������������������������������������������������������������������������������� 12



  ■ Contents

vi

Bayes’ Theorem ������������������������������������������������������������������������������������������������������ 14

Random Variables ��������������������������������������������������������������������������������������������������� 14

Variance ������������������������������������������������������������������������������������������������������������������ 15

Standard Deviation ������������������������������������������������������������������������������������������������� 16

Coefficient of Determination (R Squared) ��������������������������������������������������������������� 17

Mean Squared Error (MSE) ������������������������������������������������������������������������������������� 17

Linear Algebra ��������������������������������������������������������������������������������������� 17

Scalars and Vectors ������������������������������������������������������������������������������������������������ 17

Properties of Vectors ���������������������������������������������������������������������������������������������� 18

Axioms �������������������������������������������������������������������������������������������������������������������� 19

Subspaces �������������������������������������������������������������������������������������������������������������� 20

Matrices ������������������������������������������������������������������������������������������������������������������ 20

Summary ����������������������������������������������������������������������������������������������� 43

 ■Chapter 3: A Review of Optimization and Machine Learning ������� 45

Unconstrained Optimization ������������������������������������������������������������������ 45

Local Minimizers ���������������������������������������������������������������������������������������������������� 47

Global Minimizers ��������������������������������������������������������������������������������������������������� 47

Conditions for Local Minimizers ����������������������������������������������������������������������������� 48

Neighborhoods �������������������������������������������������������������������������������������� 49

Interior and Boundary Points ���������������������������������������������������������������������������������� 50

Machine Learning Methods: Supervised Learning �������������������������������� 50

History of Machine Learning ����������������������������������������������������������������������������������� 50

What Is an Algorithm? �������������������������������������������������������������������������������������������� 51

Regression Models �������������������������������������������������������������������������������� 51

Linear Regression ��������������������������������������������������������������������������������������������������� 51

Choosing An Appropriate Learning Rate ������������������������������������������������ 55

Newton’s Method ���������������������������������������������������������������������������������������������������� 60

Levenberg-Marquardt Heuristic ������������������������������������������������������������������������������ 61



  ■ Contents

vii

What Is Multicollinearity? ���������������������������������������������������������������������� 62

Testing for Multicollinearity ������������������������������������������������������������������� 62

Variance Inflation Factor (VIF) ��������������������������������������������������������������������������������� 62

Ridge Regression ���������������������������������������������������������������������������������������������������� 62

Least Absolute Shrinkage and Selection Operator (LASSO)������������������������������������ 63

Comparing Ridge Regression and LASSO ��������������������������������������������������������������� 64

Evaluating Regression Models�������������������������������������������������������������������������������� 64

Receiver Operating Characteristic (ROC) Curve ������������������������������������������������������ 67

Confusion Matrix����������������������������������������������������������������������������������������������������� 68

Limitations to Logistic Regression �������������������������������������������������������������������������� 69

Support Vector Machine (SVM) ������������������������������������������������������������������������������� 70

Sub-Gradient Method Applied to SVMs ������������������������������������������������������������������� 72

Extensions of Support Vector Machines ����������������������������������������������������������������� 73

Limitations Associated with SVMs �������������������������������������������������������������������������� 73

Machine Learning Methods: Unsupervised Learning ���������������������������� 74

K-Means Clustering ������������������������������������������������������������������������������������������������ 74

Assignment Step ���������������������������������������������������������������������������������������������������� 74

Update Step ������������������������������������������������������������������������������������������������������������ 75

Limitations of K-Means Clustering ������������������������������������������������������������������������� 75

Expectation Maximization (EM) Algorithm ��������������������������������������������� 76

Expectation Step ����������������������������������������������������������������������������������������������������� 77

Maximization Step �������������������������������������������������������������������������������������������������� 77

Decision Tree Learning �������������������������������������������������������������������������� 78

Classification Trees ������������������������������������������������������������������������������������������������� 79

Regression Trees ���������������������������������������������������������������������������������������������������� 80

Limitations of Decision Trees ���������������������������������������������������������������������������������� 81

Ensemble Methods and Other Heuristics ���������������������������������������������� 82

Gradient Boosting ��������������������������������������������������������������������������������������������������� 82

Gradient Boosting Algorithm ����������������������������������������������������������������������������������� 82



  ■ Contents

viii

Random Forest ������������������������������������������������������������������������������������������������������� 83

Limitations to Random Forests ������������������������������������������������������������������������������� 83

Bayesian Learning ��������������������������������������������������������������������������������� 83

Naïve Bayes Classifier �������������������������������������������������������������������������������������������� 84

Limitations Associated with Bayesian Classifiers ��������������������������������������������������� 84

Final Comments on Tuning Machine Learning Algorithms �������������������������������������� 85

Reinforcement Learning ������������������������������������������������������������������������ 86

Summary ����������������������������������������������������������������������������������������������� 87

 ■Chapter 4: Single and Multilayer Perceptron Models ������������������� 89

Single Layer Perceptron (SLP) Model ���������������������������������������������������� 89

Training the Perceptron Model ������������������������������������������������������������������������������� 90

Widrow-Hoff (WH) Algorithm����������������������������������������������������������������������������������� 90

Limitations of Single Perceptron Models ���������������������������������������������������������������� 91

Summary Statistics ������������������������������������������������������������������������������������������������ 94

Multi-Layer Perceptron (MLP) Model ����������������������������������������������������� 94

Converging upon a Global Optimum ����������������������������������������������������������������������� 95

Back-propagation Algorithm for MLP Models: �������������������������������������������������������� 95

Limitations and Considerations for MLP Models ���������������������������������������������������� 97

How Many Hidden Layers to Use and How Many Neurons Are in It ������������������������ 99

Summary ��������������������������������������������������������������������������������������������� 100

 ■Chapter 5: Convolutional Neural Networks (CNNs) ��������������������� 101

Structure and Properties of CNNs ������������������������������������������������������� 101

Components of CNN Architectures ������������������������������������������������������ 103

Convolutional Layer ���������������������������������������������������������������������������������������������� 103

Pooling Layer �������������������������������������������������������������������������������������������������������� 105

Rectified Linear Units (ReLU) Layer ���������������������������������������������������������������������� 106

Fully Connected (FC) Layer ����������������������������������������������������������������������������������� 106

Loss Layer ������������������������������������������������������������������������������������������������������������ 107



  ■ Contents

ix

Tuning Parameters ������������������������������������������������������������������������������ 108

Notable CNN Architectures ������������������������������������������������������������������ 108

Regularization ������������������������������������������������������������������������������������� 111

Summary ��������������������������������������������������������������������������������������������� 112

 ■Chapter 6: Recurrent Neural Networks (RNNs)��������������������������� 113

Fully Recurrent Networks �������������������������������������������������������������������� 113

Training RNNs with Back-Propagation Through Time (BPPT) �������������� 114

Elman Neural Networks ����������������������������������������������������������������������� 115

Neural History Compressor ����������������������������������������������������������������� 116

Long Short-Term Memory (LSTM) ������������������������������������������������������� 116

Traditional LSTM ���������������������������������������������������������������������������������� 118

Training LSTMs ������������������������������������������������������������������������������������ 118

Structural Damping Within RNNs �������������������������������������������������������� 119

Tuning Parameter Update Algorithm ��������������������������������������������������� 119

Practical Example of RNN: Pattern Detection �������������������������������������� 120

Summary ��������������������������������������������������������������������������������������������� 124

 ■ Chapter 7: Autoencoders, Restricted Boltzmann Machines,  
and Deep Belief Networks ���������������������������������������������������������� 125

Autoencoders �������������������������������������������������������������������������������������� 125

Linear Autoencoders vs� Principal Components Analysis (PCA) ���������� 126

Restricted Boltzmann Machines ���������������������������������������������������������� 127

Contrastive Divergence (CD) Learning ������������������������������������������������� 129

Momentum Within RBMs ��������������������������������������������������������������������� 132

Weight Decay �������������������������������������������������������������������������������������� 133

Sparsity ����������������������������������������������������������������������������������������������� 133

No� and Type Hidden Units ������������������������������������������������������������������������������������ 133



  ■ Contents

x

Deep Belief Networks (DBNs) �������������������������������������������������������������� 134

Fast Learning Algorithm (Hinton and Osindero 2006) ������������������������� 135

Algorithm Steps ���������������������������������������������������������������������������������������������������� 136

Summary ��������������������������������������������������������������������������������������������� 136

 ■Chapter 8: Experimental Design and Heuristics ������������������������� 137

Analysis of Variance (ANOVA) �������������������������������������������������������������� 137

One-Way ANOVA ��������������������������������������������������������������������������������������������������� 137

Two-Way (Multiple-Way) ANOVA ��������������������������������������������������������������������������� 137

Mixed-Design ANOVA �������������������������������������������������������������������������������������������� 138

Multivariate ANOVA (MANOVA) ������������������������������������������������������������������������������ 138

F-Statistic and F-Distribution �������������������������������������������������������������� 138

Fisher’s Principles ������������������������������������������������������������������������������������������������ 144

Plackett-Burman Designs�������������������������������������������������������������������� 146

Space Filling ���������������������������������������������������������������������������������������� 147

Full Factorial ���������������������������������������������������������������������������������������� 147

Halton, Faure, and Sobol Sequences ��������������������������������������������������� 148

A/B Testing ������������������������������������������������������������������������������������������ 148

Simple Two-Sample A/B Test �������������������������������������������������������������������������������� 149

Beta-Binomial Hierarchical Model for A/B Testing ������������������������������������������������ 149

Feature/Variable Selection Techniques ����������������������������������������������� 151

Backwards and Forward Selection ����������������������������������������������������������������������� 151

Principal Component Analysis (PCA) ��������������������������������������������������������������������� 152

Factor Analysis ����������������������������������������������������������������������������������������������������� 154

Limitations of Factor Analysis ������������������������������������������������������������������������������� 155

Handling Categorical Data ������������������������������������������������������������������� 155

Encoding Factor Levels����������������������������������������������������������������������������������������� 156

Categorical Label Problems: Too Numerous Levels ���������������������������������������������� 156

Canonical Correlation Analysis (CCA) �������������������������������������������������������������������� 156



  ■ Contents

xi

Wrappers, Filters, and Embedded (WFE) Algorithms ��������������������������� 157

Relief Algorithm ���������������������������������������������������������������������������������������������������� 157

Other Local Search Methods ��������������������������������������������������������������� 157

Hill Climbing Search Methods ������������������������������������������������������������������������������ 158

Genetic Algorithms (GAs) �������������������������������������������������������������������������������������� 158

Simulated Annealing (SA) ������������������������������������������������������������������������������������� 159

Ant Colony Optimization (ACO) ������������������������������������������������������������������������������ 159

Variable Neighborhood Search (VNS) ������������������������������������������������������������������� 160

Reactive Search Optimization (RSO) ��������������������������������������������������� 161

Reactive Prohibitions �������������������������������������������������������������������������������������������� 162

Fixed Tabu Search ������������������������������������������������������������������������������������������������ 163

Reactive Tabu Search (RTS) ���������������������������������������������������������������������������������� 164

WalkSAT Algorithm ����������������������������������������������������������������������������������������������� 165

K-Nearest Neighbors (KNN) ���������������������������������������������������������������������������������� 165

Summary ��������������������������������������������������������������������������������������������� 166

 ■Chapter 9: Hardware and Software Suggestions ������������������������ 167

Processing Data with Standard Hardware ������������������������������������������ 167

Solid State Drives and Hard Drive Disks (HDD) ����������������������������������� 167

Graphics Processing Unit (GPU) ����������������������������������������������������������� 168

Central Processing Unit (CPU) ������������������������������������������������������������� 169

Random Access Memory (RAM) ���������������������������������������������������������� 169

Motherboard ���������������������������������������������������������������������������������������� 169

Power Supply Unit (PSU) ��������������������������������������������������������������������� 170

Optimizing Machine Learning Software ���������������������������������������������� 170

Summary ��������������������������������������������������������������������������������������������� 170



  ■ Contents

xii

 ■Chapter 10: Machine Learning Example Problems ��������������������� 171

Problem 1: Asset Price Prediction ������������������������������������������������������� 171

Problem Type: Supervised Learning—Regression ����������������������������������������������� 172

Description of the Experiment ������������������������������������������������������������������������������ 173

Feature Selection �������������������������������������������������������������������������������������������������� 175

Model Evaluation ��������������������������������������������������������������������������������� 176

Ridge Regression �������������������������������������������������������������������������������������������������� 176

Support Vector Regression (SVR) �������������������������������������������������������������������������� 178

Problem 2: Speed Dating �������������������������������������������������������������������������������������� 180

Problem Type: Classification ��������������������������������������������������������������������������������� 181

Preprocessing: Data Cleaning and Imputation ������������������������������������������������������ 182

Feature Selection �������������������������������������������������������������������������������� 185

Model Training and Evaluation ������������������������������������������������������������ 186

Method 1: Logistic Regression ����������������������������������������������������������������������������� 186

Method 3: K-Nearest Neighbors (KNN) ����������������������������������������������������������������� 189

Method 2: Bayesian Classifier ������������������������������������������������������������������������������ 191

Summary ��������������������������������������������������������������������������������������������� 194

 ■Chapter 11: Deep Learning and Other Example Problems ���������� 195

Autoencoders �������������������������������������������������������������������������������������� 195

Convolutional Neural Networks ����������������������������������������������������������� 202

Preprocessing ������������������������������������������������������������������������������������������������������� 204

Model Building and Training ���������������������������������������������������������������� 206

Collaborative Filtering ������������������������������������������������������������������������������������������� 214

Summary ��������������������������������������������������������������������������������������������� 218

 ■Chapter 12: Closing Statements ������������������������������������������������� 219

Index ���������������������������������������������������������������������������������������������� 221



xiii

About the Author

Taweh Beysolow II is a Machine Learning Scientist 
currently based in the United States with a passion for 
research and applying machine learning methods to 
solve problems. He has a Bachelor of Science degree in 
Economics from St. Johns University and a Master of 
Science in Applied Statistics from Fordham University. 
Currently, he is extremely passionate about all matters 
related to machine learning, data science, quantitative 
finance, and economics.



xv

About the Technical 
Reviewer

Somil Asthana has a BTech from IITBHU India and  
an MS from the University of Buffalo, US, both in 
Computer Science. He is an Entrepreneur, Machine 
Learning Wizard, and BigData specialist consulting 
with fortune 500 companies like Sprint, Verizon, HPE, 
Avaya. He has a startup which provides BigData 
solutions and Data Strategies to Data Driven Industries 
in ecommerce, content / media domain.



xvii

Acknowledgments

To my family, who I am never grateful enough for. To my grandmother, from whom much 
was received and to whom much is owed. To my editors and other professionals who 
supported me through this process, no matter how small the assistance seemed. To my 
professors, who continue to inspire the curiosity that makes research worth pursuing. 
To my friends, new and old, who make life worth living and memories worth keeping. To 
my late friend Michael Giangrasso, who I intended on researching Deep Learning with. 
And finally, to my late mentor and friend Lawrence Sobol. I am forever grateful for your 
friendship and guidance, and continue to carry your teachings throughout my daily life.



xix

Introduction

It is assumed that all readers have at least an elementary understanding of statistical or 
computer programming, specifically with respect to the R programming language. Those 
who do not will find it much more difficult to follow the sections of this book which give 
examples of code to use, and it is suggested that they return to this text upon gaining that 
information.
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CHAPTER 1

Introduction to Deep 
Learning

With advances in hardware and the emergence of big data, more advanced computing 
methods have become increasingly popular. Increasing consumer demand for better 
products and companies seeking to leverage their resources more efficiently have 
also been leading this push. In response to these market forces, we have recently seen 
a renewed and widely spoken about interest in the field of machine learning. At the 
cross-section of statistics, mathematics, and computer science, machine learning refers 
to the science of creating and studying algorithms that improve their own behavior in 
an iterative manner by design. Originally, the field was devoted to developing artificial 
intelligence, but due to the limitations of the theory and technology that were present 
at the time, it became more logical to focus these algorithms on specific tasks. Most 
machine learning algorithms as they exist now focus on function optimization, and the 
solutions yielded don’t always explain the underlying trends within the data nor give 
the inferential power that artificial intelligence was trying to get close to. As such, using 
machine learning algorithms often becomes a repetitive trial and error process, in which 
the choice of algorithm across problems yields different performance results. This is fine 
in some contexts, but in the case of language modeling and computer vision, it becomes 
problematic.

In response to some of the shortcomings of machine learning, and the significant 
advance in the theoretical and technological capabilities at our disposal today, deep 
learning has emerged and is rapidly expanding as one of the most exciting fields of 
science. It is being used in technologies such as self-driving cars, image recognition on 
social media platforms, and translation of text from one language to others. Deep learning 
is the subfield of machine learning that is devoted to building algorithms that explain 
and learn a high and low level of abstractions of data that traditional machine learning 
algorithms often cannot. The models in deep learning are often inspired by many sources 
of knowledge, such as game theory and neuroscience, and many of the models often 
mimic the basic structure of a human nervous system. As the field advances, many 
researchers envision a world where software isn’t nearly as hard coded as it often needs to 
be today, allowing for a more robust, generalized solution to solving problems.
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Although it originally started in a space similar to machine learning, where the 
primary focus was constraint satisfaction to varying degrees of complexity, deep 
learning has now evolved to encompass a broader definition of algorithms that are able 
to understand multiple levels of representation of data that correspond to different 
hierarchies of complexity. In other words, the algorithms not only have predictive and 
classification ability, but they are able to learn different levels of complexity. An example 
of this is found in image recognition, where a neural network builds upon recognizing 
eyelashes, to faces, to people, and so on. The power in this is obvious: we can reach a level 
of complexity necessary to create intelligent software. We see this currently in features 
such as autocorrect, which models the suggested corrections to patterns of speech 
observed, specific to each person’s vocabulary.

The structure of deep learning models often is such that they have layers of non-linear 
units that process data, or neurons, and the multiple layers in these models process different 
levels of abstraction of the data. Figure 1-1 shows a visualization of the layers of neural 
networks.

Figure 1-1. Deep neural network

Deep neural networks are distinguished by having many hidden layers, which 
are called “hidden” because we don’t necessarily see what the inputs and outputs of 
these neurons are explicitly beyond knowing they are the output of the preceding layer. 
The addition of layers, and the functions inside the neurons of these layers, are what 
distinguish an individual architecture from another and establish the different use cases 
of a given model.

More specifically, lower levels of these models explain the “how,” and the higher-levels 
of neural networks process the “why.” The functions used in these layers are dependent 
on the use case, but often are customizable by the user, making them significantly more 
robust than the average machine learning models that are often used for classification and 
regression, for example. The assumption in deep learning models on a fundamental level is 
that the data being interpreted is generated by the interactions of different factors organized 
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in layers. As such, having multiple layers allows the model to process the data such that it 
builds an understanding from simple aspects to larger constructs. The objective of these 
models is to perform tasks without the same degree of explicit instruction that many 
machine learning algorithms need. With respect to how these models are used, one of the 
main benefits is the promise they show when applied to unsupervised learning problems, 
or problems where we don’t know prior to performing the experiment that the response 
variable y should be given a set of explanatory variables x. An example would be image 
recognition, particularly after a model has been trained against a given set of data. Let’s say 
we input an image of a dog in the testing phase, implying that we don’t tell the model what 
the picture is of. The neural network will start by recognizing eyelashes prior to a snout, 
prior to the shape of the dog’s head, and so on until it classifies the image as that of a dog.

Deep Learning Models
Now that we have established a brief overview of deep learning, it will be useful to discuss 
what exactly you will be learning in this book, as well as describe the models we will be 
addressing here.

This text assumes you are relatively informed by an understanding of mathematics 
and statistics. Be that as it may, we will briefly review all the concepts necessary to 
understand linear algebra, optimization, and machine learning such that we will form 
a solid base of knowledge necessary for grasping deep learning. Though it does help to 
understand all this technical information precisely, those who don’t feel comfortable with 
more advanced mathematics need not worry. This text is written in such a way that the 
reader is given all the background information necessary to research it further, if desired. 
However, the primary goal of this text is to show readers how to apply machine learning 
and deep learning models, not to give a verbose academic treatise on all the theoretical 
concepts discussed.

After we have sufficiently reviewed all the prerequisite mathematical and machine 
learning concepts, we will progress into discussing machine learning models in detail. 
This section describes and illustrates deep learning models.

Single Layer Perceptron Model (SLP)
The single layer perceptron (SLP) model is the simplest form of neural network and 
the basis for the more advanced models that have been developed in deep learning. 
Typically, we use SLP in classification problems where we need to give the data 
observations labels (binary or multinomial) based on inputs. The values in the input 
layer are directly sent to the output layer after they are multiplied by weights and a bias 
is added to the cumulative sum. This cumulative sum is then put into an activation 
function, which is simply a function that defines the output. When that output is above 
or below a user-determined threshold, the final output is determined. Researchers 
McCulloch-Pitts Neurons described a similar model in the 1940s (see Figure 1-2).
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Multilayer Perceptron Model (MLP)
Very similar to SLP, the multilayer perceptron (MLP) model features multiple layers 
that are interconnected in such a way that they form a feed-forward neural network. 
Each neuron in one layer has directed connections to the neurons of a separate layer. 
One of the key distinguishing factors in this model and the single layer perceptron model 
is the back-propagation algorithm, a common method of training neural networks. 
Back-propagation passes the error calculated from the output layer to the input layer 
such that we can see each layer’s contribution to the error and alter the network 
accordingly. Here, we use a gradient descent algorithm to determine the degree to 
which the weights should change upon each iteration. Gradient descent—another 
popular machine learning/optimization algorithm—is simply the derivative of a 
function such that we find a scalar (a number with magnitude as its only property) 
value that points in the direction of greatest momentum. By subtracting the gradient, 
this leads us to a solution that is more optimal than the one we currently are at until 
we reach a global optimum (see Figure 1-3).

Figure 1-2. Single layer perceptron network

Figure 1-3. MultiLayer perceptron network
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Convolutional Neural Networks (CNNs)
Convolutional neural networks (CNNs) are models that are most frequently used for 
image processing and computer vision. They are designed in such a way to mimic the 
structure of the animal visual cortex. Specifically, CNNs have neurons arranged in three 
dimensions: width, height, and depth. The neurons in a given layer are only connected 
to a small region of the prior layer. CNN models are most frequently used for image 
processing and computer vision (see Figure 1-4).

Figure 1-4. Convolutional neural network

Figure 1-5. Recurrent neural network

Recurrent Neural Networks (RNNs)
Recurrent neural networks (RNNs) are models of Artificial neural networks (ANNs) where 
the connections between units form a directed cycle. Specifically, a directed cycle is a 
sequence where the walk along the vertices and edges is completely determined by the 
set of edges used and therefore has some semblance of a specific order. RNNs are often 
specifically used for speech and handwriting recognition (see Figure 1-5).
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Restricted Boltzmann Machines (RBMs)
Restricted Boltzmann machines are a type of binary Markov model that have a unique 
architecture, such that there are multiple layers of hidden random variables and a 
network of symmetrically coupled stochastic binary units. DBMs are comprised of a set 
of visible units and series of layers of hidden units. There are, however, no connections 
between units of the same layer. DMBs can learn complex and abstract internal 
representations in tasks such as object or speech recognition (see Figure 1-6).

Figure 1-6. Restricted Boltzmann machine

Figure 1-7. Deep belief networks

Deep Belief Networks (DBNs)
Deep belief networks are similar to RBMs except each subnetwork’s hidden layer is in fact 
the visible layer for the next subnetwork. DBNs are broadly a generative graphical model 
composed of multiple layers of latent variables with connections between the layers but 
not between the units of each individual layer (see Figure 1-7).
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Other Topics Discussed
After covering all the information regarding models, we will turn to understanding the 
practice of data science. To aid in this effort, this section covers additional topics of 
interest.

Experimental Design
The emphasis of this text ultimately is to give the reader a theoretical understanding of 
the deep learning models such that they feel comfortable enough to apply them. As such, 
it is important to discuss elements of experimental design to help the reader understand 
proper ways to structure their research so it leads to actionable insights and not a waste 
of time and/or energy. Largely, I will draw upon Fisher’s principles in addition to defining 
best practices given the problems often utilized by deep learning.

Feature Selection
A component of experimental design, but ultimately entirely a subtopic of research unto 
itself, I will cover the concept of variable selection and multiple methods used often by 
data scientists to handle high dimensional data sets. Specifically, I will speak in depth 
about principal components analysis as well as genetic algorithms. All the algorithms 
discussed are available in the R statistical language in open source packages. For those 
who want to research this area of research further, I’ll reference papers relevant to this 
topic. From a deep learning perspective, we will discuss in depth how each model 
performs its own specific methods of feature selection by design of the layer architecture 
in addition to addressing recent discoveries in the field.

Applied Machine Learning and Deep Learning
For the final section of the text, I will walk the reader through using packages in the R 
language for machine learning and deep learning models to solve problems often seen 
in professional and academic settings. It is hoped that from these examples, readers will 
be motivated to apply machine learning and deep learning in their professional and/
or academic pursuits. All the code for the examples, experiments, and research uses the 
R programming language and will be made available to all readers via GitHub (see the 
appendix for more). Among the topics discussed are regression, classification, and image 
recognition using deep learning models.

History of Deep Learning
Now that we have covered the general outline of the text, in addition to what the reader 
is expected to learn during this period, we will see how the field has evolved to this 
stage and get an understanding of where it seeks to go today. Although deep learning 
is a relatively new field, it has a rich and vibrant history filled with discovery that is still 
ongoing today. As for where this field finds its clearest beginnings, the discussion brings 
us to the 1960s.
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The first working learning algorithm that is often associated with deep learning 
models was developed by Ivakhenenko and Lapa. They published their findings in a 
paper entitled “Networks Trained by the Group Method of Data Handling (GMDH)” in 
1965. These were among the first deep learning systems of the feed-forward multilayer 
perceptron type. Feed-forward networks describe models where the connections between 
the units don’t form a cycle, as they would be in a recurrent neural network. This model 
featured polynomial activation functions, and the layers were incrementally grown and 
trained by regression analysis. They were subsequently pruned with the help of a separate 
validation set, where regularization was used to weed out superfluous units.

In the 1980s, the neocognitron was introduced by Kunihio Fukushima. It is a 
multilayered artificial neural network and has primarily been used for handwritten 
character recognition and similar tasks that require pattern recognition. Its pattern 
recognition abilities gave inspiration to the convolutional neural network. Regardless, 
the neocognitron was inspired by a model proposed by the neurophysiologists Hubel 
and Wiesel. Also during this decade, Yann LeCun et al. applied the back-propagation 
algorithm to a deep neural network. The original purpose of this was for AT&T to 
recognize handwritten zip codes on mail. The advantages of this technology were 
significant, particularly right before the Internet and its commercialization were to occur 
in the late 1990s and early 2000s.

In the 1990s, the field of deep learning saw the development of a recurrent neural 
network that required more than 1,000 layers in an RNN unfolded in time, and the 
discovery that it is possible to train a network containing six fully connected layers and 
several hundred hidden units using what is called a wake-sleep algorithm. A heuristic, 
or an algorithm that we apply over another single or group of algorithms, a wake-sleep 
algorithm is a unsupervised method that allows the algorithm to adjust parameters in 
such a way that an optimal density estimator is outputted. The “wake” phase describes 
the process of the neurons firing from input to output. The connections from the inputs 
and outputs are modified to increase the likelihood that they replicate the correct activity 
in the layer below the current one. The “sleep” phase is the reverse of the wake phase, 
such that neurons are fired by the connections while the recognitions are modified.

As rapidly as the advancements in this field came during the early 2000s and the 
2010s, the current period moving forward is being described as the watershed moment 
for deep learning. It is now that we are seeing the application of deep learning to a 
multitude of industries and fields as well as the very devoted improvement of the 
hardware used for these models. In the future, it is expected that the advances covered in 
deep learning will help to allow technology to make actions in contexts where humans 
often do today and where traditional machine learning algorithms have performed 
miserably. Although there is certainly still progress to be made, the investment made 
by many firms and universities to accelerate the progress is noticeable and making a 
significant impact on the world.
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Summary
It is important for the reader to ultimately understand that no matter how sophisticated 
any model is that we describe here, and whatever interesting and powerful uses it may 
provide, there is no substitute for adequate domain knowledge in the field in which these 
models are being used. It is easy to fall into the trap, for both advanced and introductory 
practitioners, of having full faith in the outputs of the deep learning models without 
heavily evaluating the context in which they are used. Although seemingly self-evident, 
it is important to underscore the importance of carefully examining results and, more 
importantly, making actionable inferences where the risk of being incorrect is most 
limited. I hope to impress upon the reader not only the knowledge of where they can 
apply these models, but the reasonable limitations of the technology and research as it 
exists today.

This is particularly important in machine learning and deep learning because 
although many of these models are powerful and reach proper solutions that would be 
nearly impossible to do by hand, we have not determined why this is the case always. For 
example, we understand how the back-propagation algorithm works, but we can’t see it 
operating and we don’t have an understanding of what exactly happened to reach such 
a conclusion. The main problem that arises from this situation is that when a process 
breaks, we don’t necessarily always have an idea as to why. Although there have been 
methods created to try and track the neurons and the order in which they are activated, 
the decision-making process for a neural network isn’t always consistent, particularly 
across differing problems. It is my hope that the reader keeps this in mind when moving 
forward and evaluates this concern appropriately when necessary.
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CHAPTER 2

Mathematical Review

Prior to discussing machine learning, a brief overview of statistics is necessary. Broadly, 
statistics is the analysis and collection of quantitative data with the ultimate goal of 
making actionable insights on this data. With that being said, although machine learning 
and statistics aren’t the same field, they are closely related. This chapter gives a brief 
overview of terms relevant to our discussions later in the book.

Statistical Concepts
No discussion about statistics or machine learning would be appropriate without initially 
discussing the concept of probability.

Probability
Probability is the measure of the likelihood of an event. Although many machine learning 
models tend to be deterministic (based off of algorithmic rules) rather than probabilistic, 
the concept of probability is referenced specifically in algorithms such as the expectation 
maximization algorithm in addition to more complex deep learning architectures such 
a recurrent neural networks and convolutional neural networks. Mathematically, this 
algorithm is defined as the following:

Probability of Event A
number of times event Aoccurs

all possible ev
=

eents

This method of calculating probability represents the frequentist view of probability, 
in which probability is by and large derived from the following formula. However, the 
other school of probability, Bayesian, takes a differing approach. Bayesian probability 
theory is based on the assumption that probability is conditional. In other words, the 
likelihood of an event is influenced by the conditions that currently exist or events that 
have happened prior. We define conditional probability in the following equation. The 
probability of an event A, given that an event B has occurred, is equal to the following:

P A B
P A B

P B
|( ) = Ç( )

( )
,
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Provided P B( ) > 0.

In this equation, we read P A B|( )  as “the probability of A given B” and P A BÇ( )  as 

“the probability of A and B.”

With this being said, calculating probability is not as simple as it might seem, in that 
dependency versus independency must often be evaluated. As a simple example, let’s 
say we are evaluating the probability of two events, A and B. Let’s also assume that the 
probability of event B occurring is dependent on A occurring. Therefore, the probability 
of B occurring should A not occur is 0. Mathematically, we define dependency versus 
independency of two events A and B as the following:

P A B P A|( ) = ( )

P B A P B|( ) = ( )

P A B P A P BÇ( ) = ( ) ( )

In Figure 2-1, we can envision events A and B as two sets, with the union of A and B 
as the intersection of the circles:

Figure 2-1. Representation of two events (A,B)

Should this equation not hold in a given circumstance, the events A and B are said to 
be dependent.

And vs. Or
Typically when speaking about probability—for instance, when evaluating two events  
A and B—probability is often in discussed in the context of “the probability of A and B” or 
“the probability of A or B.” Intuitively, we define these probabilities as being two different 
events and therefore their mathematical derivations are difference. Simply stated, or 
denotes the addition of probabilities events, whereas and implies the multiplication of 
probabilities of event. The following are the equations needed:
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And (multiplicative law of probability) is the probability of the intersection of two 
events A and B:

P A B P A P B AÇ( ) = ( ) ( )|

= ( ) ( )P B P A B|

If the events are independent, then

P A B P A P BÇ( ) = ( ) ( )

Or (additive law of probability) is the probability of the union of two events A and B:

P A B P A P B P A BÈ( ) = ( )+ ( )- Ç( )

The symbol P A BÈ( )  means “the probability of A or B.”

Figure 2-2 illustrates this.

Figure 2-2. Representation of events A,B and set S

The probabilities of A and B exclusively are the section of their respective spheres 
which do not intersect, whereas the probability of A or B would be the addition of these 
two sections plus the intersection. We define S as the sum of all sets that we would 
consider in a given problem plus the space outside of these sets. The probability of S is 
therefore always 1.

With this being said, the space outside of A and B represents the opposite of these 
events. For example, say that A and B represent the probabilities of a mother coming 
home at 5 p.m. and a father coming home at 5 p.m. respectively. The white space 
represents the probability that neither of them comes home at 5 p.m.
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Bayes’ Theorem
As mentioned, Bayesian statistics is continually gaining appreciation within the fields 
of machine learning and deep learning. Although these techniques can often require 
considerable amounts of hard coding, their power comes from the relatively simple 
theoretical underpinning while being powerful and applicable in a variety of contexts. 
Built upon the concept of conditional probability, Bayes’ theorem is the concept that the 
probability of an event A is related to the probability of other similar events:

P B A
P A B P B

P A B P Bj

j j

i
k

i i

|
|

|
( ) = ( ) ( )

( ) ( )å

Referenced in later chapters, Bayesian classifiers are built upon this formula as well 
as the expectation maximization algorithm.

Random Variables
Typically, when analyzing the probabilities of events, we do so within a set of random 
variables. We define a random variable as a quantity whose value depends on a set of 
possible random events, each with an associated probability. Its value is known prior to it 
being drawn, but it also can be defined as a function that maps from a probability space. 
Typically, we draw these random variables via a method know as random sampling. 
Random sampling from a population is said to be random when each observation is 
chosen in such a way that it is just as likely to be selected as the other observations within 
the population.

Broadly speaking, the reader can expect to encounter two types of random variables: 
discrete random variables and continuous random variables. The former refers to 
variables that can only assume a finite number of distinct values, whereas the latter are 
variables that have an infinite number of possible variables. An example is the number of 
cars in a garage versus the theoretical change in percentage change of a stock price. When 
analyzing these random variables, we typically rely on a variety of statistics that readers 
can expect to see frequently. But these statistics often are used directly in the algorithms 
either during the various steps or in the process of evaluating a given machine learning or 
deep learning model.

As an example, arithmetic means are directly used in algorithms such as K-means 
clustering while also being a theoretical underpinning of the model evaluation statistics 
such as mean squared error (referenced later in this chapter). Intuitively, we define the 
arithmetic mean as the central tendency of a discrete set of numbers—specifically it is the 
sum of the values divided by the number of the values. Mathematically, this equation is 
given by the following:

x
N

x
i

N

i=
=
å1

1
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The arithmetic mean, broadly speaking, represents the most likely value from a set 
of values within a random variable. However, this isn’t the only type of mean we can use 
to understand a random variable. The geometric mean is also a statistic that describes the 
central tendency of a sequence of numbers, but it is acquired by using the product of the 
values rather than the sum. This is typically used when comparing different items within 
a sequence, particularly if they have multiple properties individually. The equation for 
the geometric mean is given as follows:

i

n

i

n

n
nx x x x

=
Õæ
è
ç

ö

ø
÷ = ¼( )

1

1

1 2

1

* * *

For those involved in fields where the use of time series is frequent, geometric means 
are useful to acquiring a measure of change over certain intervals (hours, months, years, 
and so on). That said, the central tendency of a random variable is not the only useful 
statistic for describing data. Often, we would like to analyze the degree to which the data 
is dispersed around the most probable value. Logically, this leads us to the discussion 
of variance and standard deviation. Both of these statistics are highly related, but they 
have a few key distinctions: variance is the squared value of standard deviation, and the 
standard deviation is often more referenced than variance across various fields. When 
addressing the latter distinction, this is because variance is much harder to visually 
describe, in addition to the fact that the units that variance is in are ambiguous. Standard 
deviation is in the units of the random variable being analyzed and is easy to visualize.

For example, when evaluating the efficiency of a given machine learning algorithm, 
we could draw the mean squared error from several epochs. It might be helpful to collect 
sample statistics of these variables, such that we can understand the dispersion of this 
statistic. Mathematically, we define variance and standard deviation as the following

Variance

s
m2

2

=
-( )S X

N

Var X E X E X( ) = - [ ]( )( )é
ëê

ù
ûú

2

= - [ ]+ [ ]( )E X XE X E X[ ]2
2

2

= éë ùû - [ ] [ ]+ [ ]( )E X E X E X E X2 2
2

= éë ùû - [ ] [ ]+ [ ]( )E X E X E X E X2 2
2
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Standard Deviation

s =
-( )

-

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

å
i

n

ix x

n

2

1

Also, covariance is useful for measuring the degree to which a change in one feature 
affects the other. Mathematically, we define covariance as the following:

cov X Y
n

x x y y
i

n

i i,( ) = -( ) -
=
å1

1

( )

Although deep learning has made significant progress in modeling relationships 
between variables with non-linear correlations, some estimators that one would use 
for more simple tasks require this as a preliminary assumption. For example, linear 
regression requires this to be an assumption, and although many machine learning 
algorithms can model complex data, some are better at it than others. As such, it 
is recommended that prior to selecting estimators features be examined for their 
relationship to one another using these prior statistics. As such, this leads us to the 
discussion of the correlation coefficient which measures the degree to which to variables 
are linearly related to each other. Mathematically, we define this as follows:

correlation
n

x x y y

x x y yi

n
i i

i i

= =
-( ) -( )
-( ) -( )=

år 1

1
2 2

Correlation coefficients can have a value as low as –1 and as high as 1, with the lower 
bound representing an opposite correlation and the upper bound representing complete 
correlation. A correlation coefficient of 0 represents complete lack of correlation, 
statistically speaking. When evaluating machine learning models, specifically those that 
perform regression, we typically reference the coefficient of determination (R squared) 
and mean squared error (MSE). We think of R squared as a measure of how well the 
estimated regression line of the model fits the distribution of the data. As such, we 
can state that this statistic is best known as the degree of fitness of a given model. MSE 
measures the average of the squared error of the deviations from the models predictions 
to the observed data. We define both respectively as the following:



Chapter 2 ■ MatheMatiCal review

17

Coefficient of Determination (R Squared)

R
y y

y yi

n
i

i

2

2

21= -
-( )
-( )å

ˆ

ˆ

Mean Squared Error (MSE)

MSE
n

y y
i

n

i= -( )
=
å1

1

2

With respect to what these values should be, I discuss that in detail later in the text. Briefly 
stated, though, we typically seek to have models that have high R squared values and 
lower MSE values than other estimators chosen.

Linear Algebra
Concepts of linear algebra are utilized heavily in machine learning, data science, 
and computer science. Though this is not intended to be an exhaustive review, it is 
appropriate for all readers to be familiar with the following concepts at a minimum.

Scalars and Vectors
A scalar is a value that only has one attribute: magnitude. A collection of scalars, known 
as a vector, can have both magnitude and direction. If we have more than one scalar 
in a given vector, we call this an element of vector space. Vector space is distinguished 
by the fact that it is sequence of scalars that can be added and multiplied, and that can 
have other numerical operations performed on them. Vectors are defined as a column 
vector of n numbers. When we refer to the indexing of a vector, we will describe i as the 
index value. For example, if we have a vector x, then x

1
 refers to the first value in vector x. 

Intuitively, imagine a vector as an object similar to a file within a file cabinet. The values 
within this vector are the individual sheets of paper, and the vector itself is the folder that 
holds all these values.

Vectors are one of the primary building blocks of many of the concepts discussed 
in this text (see Figure 2-3). For example, in deep learning models such as Doc2Vec 
and Word2Vec, we typically represent words, and documents of text, as vectors. This 
representation allows us to condense massive amount of data into a format easy to input to 
neural networks to perform calculations on. From this massive reduction of dimensionality, 
we can determine the degree of similarity, or dissimilarity, from one document to another, 
or we can gain better understanding of synonyms than from simple Bayesian inference. 
For data that is already numeric, vectors provide an easy method of “storing” this data to 
be inputted into algorithms for the same purpose. The properties of vectors (and matrices), 
particularly with respect to mathematical operations, allow for relatively quick calculations 
to be performed over massive amounts of data, also presenting a computational advantage 
of manually operating on each individual value within a data set.
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Properties of Vectors
Vector dimensions are often denoted by ℝn or ℝm where n and m is the number of values 
within a given vector. For example, xÎ5  denotes set of 5 vectors with real components. 
Although I have only discussed a column vector so far, we can also have a row vector.  
A transformation to change a column vector into a row vector can also be performed, 
known as a transposition. A transposition is a transformation of a matrix/vector X such 
that the rows of X are written as the columns of X  T and the columns of X are written as the 
rows of X T.

Addition
Let’s define two vectors d d d dn

T= ¼[ ]1 2, , ,  and e e e en
T= ¼[ ]1 2, , ,  where

d e for i nn n= = ¼, , , ,1 2

The sum of the vectors is therefore the following:

d e d e e d d en n

T
+ = +( ) +( ) ¼ +( )éë ùû1 1 2 2, , ,

Subtraction
Given that the assumptions from the previous example have not changed, the difference 
between vectors d and e would be the following:

d e d e e d d en n

T
- = -( ) -( ) ¼ -( )éë ùû1 1 2 2, , ,

Figure 2-3. Representation of a vector



Chapter 2 ■ MatheMatiCal review

19

Element Wise Multiplication
Given that the assumptions from the previous example have not changed, the product of 
vectors d and e would be the following:

d e d e e d d en n

T
* = *( ) *( ) ¼ *( )éë ùû1 1 2 2, , ,

Axioms
Let a,b, and x be a set of vectors within set A, and e and d be scalars in B. The following 
axioms must hold if something is to be a vector space:

Associative Property
The associative property refers to the fact that rearranging the parentheses in a given 
expression will not change the final value:

x a b x a b+ +( ) = +( )+

Commutative Property
The commutative property refers to the fact that changing the order of the operands in a 
given expression will not change the final value:

a b b a+ = +

Identity Element of Addition

a a for all a A+ = Î0 ,

Where 0ÎA. 0 in this instance is the zero vector, or a vectors of zeros.

Inverse Elements of Addition
In this instance, for every a := A, there exists an element –a := A, which we label as the 
additive inverse of a:

a a+ -( ) = 0
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Identity Element of Scalar Multiplication

1( ) =a a

Distributivity of Scalar Multiplication with Respect to Vector 
Addition

e a b ea eb+( ) = +

Distributivity of Scalar Multiplication with Respect to Field 
Addition

a b d ad bd+( ) = +

Subspaces
A subspace of a vector space is a nonempty subset that satisfies the requirements for a 
vector space, specifically that linear combinations stay in the subspace. This subset is 
“closed” under addition and scalar multiplication. Most notably, the zero vector will 
belong to every subspace. For example, the space that lies between the hyperplanes of 
produced by a support vector regression, a machine learning algorithm I address later, is 
an example of a subspace. In this subspace are acceptable values for the response variable.

Matrices
A matrix is another fundamental concept of linear algebra in our mathematical review. 
Simply put, a matrix is a rectangular array of numbers, symbols, or expressions 
arranged in rows and columns. Matrices have a variety of uses, but specifically are often 
used to store numerical data. For example, when performing image recognition with a 
convolutional neural network, we represent the pixels in the photos as numbers within 
a 3-dimensional matrix, representing the matrix for the red, green, and blue photos 
comprised of a color photo. Typically, we take an individual pixel to have 256 individual 
values, and from this mathematical interpretation an otherwise difficult-to-understand 
representation of data becomes possible. In relation to vectors and scalars, a matrix 
contains scalars for each individual value and is made up of row and column vectors. 
When we are indexing a given matrix A, we will be using the notation A

ij
. We also say 

that A a Aij
m x n= Î,  .
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Matrix Properties
Matrices themselves share many of the same elementary properties that vectors have 
by definition of matrices being combinations of vectors. However, there are some key 
differences that are important, particularly with respect to matrix multiplication. For 
example, matrix multiplication is a key element of understanding how ordinary least 
squares regression works, and fundamentally why we would be interested in using 
gradient descent when performing linear regression. With that being said, the properties 
of matrices are discussed in the rest of this section.

Addition
Let’s assume A and B are both matrices with m x n dimensions:

A B A B for i nij ij+ = +( ) = ¼, , , ,1 2

Scalar Multiplication
Let us assume A and B are both matrices with m x n dimensions

AB A B for i nij ij= ( ) = ¼* , , , ,1 2

Transposition

A Aij
T

ji=

Types of Matrices
Matrices come in multiple forms, usually denoted by the shape that they take on. 
Although a matrix can take on a multitude of dimensions, there are many that will 
commonly references. Among the simplest is the square matrix, which is distinguished by 
the fact that it has an equal amount of rows and columns:

A =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

a a a a

a a a a

n

n n n n n

1 1 1 2 1 3 1

1 2 3

, , , ,

, , , ,

�
� � �

�
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It is generally unlikely that the reader will come across a square matrix, but the 
implications of matrix properties make discussing it necessary. That said, this brings us 
to discussing different types of matrices such as the diagonal and identity matrix. The 
diagonal matrix is a matrix where all the entries that are not along the main diagonal of 
the matrix (from the top left corner through the bottom right corner) are zero, given by 
the following:

A =
5 0 0

0 4 0

0 0 3

Similar to the diagonal matrix, the identity matrix also has zeros for values along all 
entries except for the diagonal of the matrix. The key distinction here, however, is that all 
the entries in the diagonal matrix are 1. This matrix is given by the following diagram:

In =
1 0 0

0 1 0

0 0 1

Another matrix you’re not likely to see, but which is important from a theoretical 
perspective, is the symmetric matrix, whose transpose is equal to the non-transformed 
matrix. I describe transpose subsequently in this chapter, but it can be understood simply 
as transforming the rows into the columns and vice versa.

The final types of matrix I will define, specifically referenced in Newton’s method  
(an optimization method described in Chapter 3), are definite and semi-definite 
matrices. A symmetric matrix is called positive-definite if all entries are greater than 
zero. But if all the values are all non-negative, the matrix is called positive semi-definite. 
Although described in greater detail in the following chapter, this is important for the 
purpose of understanding whether a problem has a global optimum (and therefore 
whether Newton’s method can be used to find this global optimum).

Matrix Multiplication
Unlike vectors, matrix multiplication contains unique rules that will be helpful for readers 
who plan on applying this knowledge, particularly those using programming languages. 
For example, imagine that we have two matrices, A and B, and that we want to multiply 
them. These matrices can only be multiplied under the condition that the number of 
columns in A is the same as the number of rows in column B. We call this matrix product 
the dot product of matrices A and B. The next sections discuss examples of matrix 
multiplication and its products.

http://dx.doi.org/10.1007/978-1-4842-2734-3_3
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Scalar Multiplication
Assume we have some matrix, A, that we would like to multiply by the scalar value sigma. 
The result of this operation is displayed by the following diagram:

s s
s s s

A

A A A

A A A

A A Am

n n n m

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

1 1 1 2 1

1 2

1 1 1 2 1, , ,

, , ,

, ,�
� � �

�

� ,,

, , ,

m

n n n mA A A
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�s s s1 2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Each value in the matrix is multiplied by the scalar such in the new matrix that is 
subsequently yielded. Specifically, we can see this relationship displayed in the equations 
following related to eigendecomposition.

Matrix by Matrix Multiplication
Matrix multiplication is utilized in several regression methods, specifically OLS, ridge 
regression, and LASSO. It is an efficient yet simple way of representing mathematical 
operations on separate data sets. In the following example, let D be an n x m matrix and 
E be an m x p matrix such that when we multiply them both by each other, we get the 
following:

D

D D D

D D D

E

E E Em

n n n m

p

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
1 1 1 2 1

1 2

1 1 1 2 1, , ,

, , ,

, , ,

,

�
� � �

�

�
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�E E Em n m p, , ,1 2
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p

n n n p

=

é

ë

ê
ê
ê

ù

û

ú
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ú

1 1 1 2 1

1 2

, , ,

, , ,
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Assuming that the dimensions are equal, each element in one matrix is multiplied 
by the corresponding element of the other element, yielding a new matrix. Although 
walking through these examples may seem pointless, it is actually more important than 
it appears—particularly because all the operations will be performed by a computer. 
Readers should be familiar with, if only for the purpose of debugging errors in code, the 
products of matrix multiplication. We will see different matrix operations that also will 
occur in different contexts later.
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Row and Column Vector Multiplication
For those wondering how exactly matrix multiplication yields a single scalar value, the 
following section elaborates on this further. If

X x y z Y

d

e

f

= ( ) =,

then their matrix products are given by the following:

XY x y z

d

e

f

= ( )

XY xd ye zf= + +

Contrastingly:

YX

d

e

f

x y z= ( )

YX

dx dy dz

ex ey ez

fx fy fz

=

Column Vector and Square Matrix
In some cases, we need to multiple a column vector by an entire matrix. In this instance, 
the following holds:

B C

d

e

f

= =
1 2 3

4 5 6

7 8 9

,

The matrix product of B and C is given by the following:

YX

d d d

e e e

f f f

=
1 2 3

4 5 6

7 8 9
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Square Matrices
Among the simplest of matrix operations is when we are dealing with two square 
matrices, as follows:

B D= =
1 2 3

4 5 6

7 8 9

9 8 7

6 5 4

3 2 1

,

BD =
1 2 3

4 5 6

7 8 9

9 8 7

6 5 4

3 2 1

x

=
( )+ ( )+ ( ) ( )+ ( )+ ( ) ( )+ ( )+ ( )
( )+
1 9 2 6 3 3 1 8 2 5 3 2 1 7 2 4 3 1

4 9

* * * * * * * * *

* 55 6 6 3 4 8 5 5 6 2 4 7 5 4 6 1

7 9 8 6

* * * * ( * ) * * *

* *

( )+ ( ) ( )+ ( )+ ( )+ ( )+ ( )
( )+ ( )+ 99* * * * * * *3 7 8 8 5 9 2 7 7 8 4 9 1( ) ( )+ ( )+ ( ) ( )+ ( )+ ( )

BD =
30 24 18

84 69 54

138 114 90

By this same logic:

DB =
90 114 138

54 69 84

18 24 30

Row Vector, Square Matrix, and Column Vector
In other cases, we will perform operations on matrices/vectors with distinct shapes 
among each:

A B C= = =
9 8 7

6 5 4

3 2 1

1 2 3

4

5

6

, ,

ABC =
9 8 7

6 5 4

3 2 1

1 2 3

4

5

6

x x
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9 8 7

6 5 4

3 2 1

X 4 10 18

ABC =
36 32 28

60 50 40

54 36 18

Rectangular Matrices
Our last examples address the rectangular matrix. For this example, we have two matrices 
Z and Y such that:

Z Y= =
1 2 3

4 5 6

9 8

7 6

5 4

,

ZY =
1 2 3

4 5 6

9 8

7 6

5 4

x

=
9 40

28 18

10 240

Matrix Multiplication Properties (Two Matrices)
Not Commutative
In general, given two matrices A and B, AB ≠ BA, AB and BA may not be simultaneously 
defined, and even if they are, they still may not be equal. This is contrary to ordinary 
multiplication of numbers. For example, to specify the ordering of matrix multiplication 
verbally, pre-multiply A by B means BA while post-multiply A by C means AC. As long as 
the entries of the matrix come from a ring that has an identity and n > 1, there is a pair of 
n x n non-commuting matrices over the ring. A notable exception is the identity matrix, 
because it commutes with every square matrix.
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Distributive over Matrix Addition
Distributivity in matrices follows the same logic as it does in vectors. As such, the 
following axioms hold:

Left distributivity:

A B C AB BC+( ) = +

Right distributivity:
A B C AC BC+( ) = +

Index notation of these operations respectively are the following:

å +( ) = å +åk ik kj kj k ik kj k ik kjA B C A B A C

å +( ) = å +åk ik ik kj k ik kj k ik kjA B C A C B C

Scalar Multiplication Is Compatible with Matrix Multiplication
Following our discussion earlier of scalar multiplication with respect to a matrix, we see 
here that distributivity of scalar multiplication with matrices also holds. For example, we 
have the following equation, which proves this as such:

l lAB A B( ) = ( )

AB A B( ) = ( )l l

λ is a scalar. If the entries of the matrix are real or complex numbers, then all four 
quantities are equal. More generally, all four are equal if lambda belongs to the center of 
the ring of entries of the matrix, because in this case l lX X= .

Index notation of this is the following:

l l lå å åK ik kj k ik kj ik kjA B A B A B( ) = ( ) = ( )

å å åk ik kj ik kj k ik kjA B A B A B( ) = ( ) = ( )l l l
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Transpose
As referred to earlier, the transpose of a matrix is an operation on a matrix where the 
product of this transformation is a new matrix in which the new matrix’s rows are the 
original matrix’s columns and the new matrix’s columns are the original matrix’s rows. 
The following equation shows how we denote this transformation, given two matrices  
A and B

AB B A
T T T( ) =

where T denotes the transpose, the interchange of row I with column I in a matrix. This 
identity holds for any matrices over a commutative ring, but not for all rings in general. 
Note that A and B are reversed.

Index notation:

AB AB
T

ij ji( )é
ë

ù
û = ( )

= ( ) ( )å K jk ki
A B

= ( ) ( )å k
T

kj

T

ik
A B

= ( ) ( )å k
T

ik

T

kj
B A

= ( )( )éë ùûB AT T

ij

Trace
The trace of a product AB is independent of the order of A and B. The trace can also be 
thought of as the diagonal of a matrix:

tr AB tr BA( ) = ( )

Index notation:

tr AB A Bi k ik ik( ) = å å

= å åk i ki ikB A

= ( )tr BA
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Norms
A norm is a function that assigns a strictly positive length or size to each vector in a vector 
space. In machine learning you will encounter many various norms, and they play a 
vital role in reducing the MSE of regression models in addition to increasing accuracy 
in classification models. For example, ridge regression uses an L2 norm to shrink the 
regression coefficients during periods of high multicollinearity, and LASSO uses an L1 
norm to shrink some regression coefficients to zero. I will review both of these regression 
models in detail in Chapter 3.

In the context of deep learning, experimentation of adding different layers in deep 
neural networks, in which norms are used to perform dimensionality reduction on 
data, have proved successful at some tasks. For example, use of an L2 norm layer was 
performed in a convolutional neural network. But this also can be used as a dissimilarity/
loss measure in multilayer perceptrons rather than a traditional gradient function.

Euclidean Norm
This describes the distance over a vector within Euclidean space in ℝn. Let’s assume 
x x x xn= ¼( )1 2, , , .

L2 Norm
This gives the distance from the origin point within the vector to the last point within x, 
and is often referred to as the L2 norm:

x x x xn2

2

1
2

2
2 2= + +¼+

L1 Norm
This is the same equation as the L2 norm except that the scalars are not squared:

x x x xn= + +¼+1 2

The shape of the L1 verses L2 norms are distinguished as shown in Figure 2-4.

http://dx.doi.org/10.1007/978-1-4842-2734-3_3


Chapter 2 ■ MatheMatiCal review

30

Note that with the L1 norm we observe a square (or cubic) shape, and with the L2 
norm we observe a circle (or spherical) shape. In certain situations, it’s optimal to use the 
L1 norm to perform variable selection at the same time while also performing regression 
analysis, but this is an issue that isn’t always present, and I discuss it in further detail in 
Chapter 8.

The advantage of using an L1 norm is obvious in that you can perform feature 
selection while performing regression. However, it should be noted that performing 
feature selection after reduction of the data set has already occurred can encourage 
overfitting. Strategies and general practices for building a robust model are reviewed 
more extensively in Chapter 8, but it is generally suggested that readers use the L1 norm 
in the instance that there has been little to no feature selection performed prior to fitting 
the data to the model.

For those interested in vehicle routing problems, the taxicab (Manhattan) norm is 
relevant for those who want to focus on fields related to transportation and/or delivery or 
packages/persons. The taxicab norm describes the distance a taxicab would travel along 
a given city block:

x x for i ni i= = ¼å , , , ,1 2

The absolute value norm is a norm on the one-dimensional vector spaces formed 
by real or complex numbers. Absolute value norms have been used in place of other loss 
functions or dissimilarity functions:

x x=

P-norm
Let p ≥ 1 be a real number:

Figure 2-4. L1 and L2 norm shapes

http://dx.doi.org/10.1007/978-1-4842-2734-3_8
http://dx.doi.org/10.1007/978-1-4842-2734-3_8
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x x
p i

p p= ( )å
1

The shape of this norm is shown in Figure 2-5.

Figure 2-5. P-norm

For p =1,  we get the taxicab norm, for p = 2,  we get the Euclidean norm, and as 
p®¥,  we get the infinity norm or the maximum norm. The p-norm is related to the 

generalized mean or power mean. When 0 1< <p ,  though, we don’t get a discretely 
defined norm, because it violates the triangle inequality. The triangle inequality states that 
any given side of a triangle must be less than or equal to the sum of the other two sides.

Matrix Norms
A matrix norm is a function from  nxn ®  that satisfies a given number of properties, 
symbolized by ||A|| given a matrix A.

The properties are as follows:

 1. A for all M and also A if Anxn> Î = =0 0 0

 2. aM a M for all a n= Î* 

 3. M N M N+ £ +

 4. MN M N£ *
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Inner Products
An important type of vector space that’s referenced often in machine learning literature is 
the inner product. This element of vector space allows someone to know the length of a 
vector or the angle between two vectors. In addition, you can also determine from the 
inner product normed vector space. Specifically, the inner product is the function utilized 
in the kernels of support vector machines to compute the images of the data that the 
support vector machine puts into feature space from the input space. The inner product 
space of is a function 〈.,.〉 defined by the following, where u and v are vectors, 
u u u u v v v vn n= ¼ =] [ ¼éë ùû1 2 1 2, , , , , , , :

u v u v u v u v for i nn n, = + +¼+ = ¼1 1 2 2 1 2, , ,

For a function to be an inner product, it must satisfy three axioms:
Conjugate symmetry:

u v v u, ,=

Linearity in the first argument:

au bv w a u w b v w+ = +, , ,

Positive-definiteness:

For any u V u u and u u only if uÎ ³ = =, ;, ,0 0 0

Norms on Inner Product Spaces
Inner product spaces naturally have a defined norm, which is based upon the norm of the 
space itself, given by the following:

x x=

Directly from the axioms, we can prove the following: The Cauchy-Schwartz inequality 
states that for all vectors u and v of an inner product space, the following is true:

u v u u v v, , ,
2
£ *

u v u v, £ *
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The two sides are only considered equal if and only if u and v are linearly dependent, 
which means that they would have to be parallel, one of the vectors has a magnitude of 
zero, or one is a scalar multiplier of the other.

Proofs
First proof: expanding out the brackets and collecting together identical terms yields the 
following equation:

å å å å å å å åi
n

j
n

i j j i i
n

i j
n

j i
n

i j
n

j i ia b a b a b b a a b-( ) = ( ) + ( ) - ( )2 2 2 2 2 2 jj
n

j jb a

= ( )( )- ( )2 22 2 2
å å åi

n
i i

n
i i

n
i ia b a b

Because the lefthand side of the equation is the sum of squares of real numbers, it is 
greater than or equal to zero. As such, the following must be true:

å å åi
n

i i
n

i i
n

i ia b a b2 2 2( )( ) ³ ( )

Second proof: consider the following quadratic polynomial equation:

f x a x a b x b a x bi
n

i i
n

i i i
n

i i i( ) = ( ) - ( ) + = -( )å å å å2 2 2 2
2

Because f x for x( ) ³ Î0 any ,  it follows that the discriminant of f (x) is negative, 

and therefore the following must be the case:

å å åi
n

i i i
n

i i
n

ia b a b( ) -( )( ) £2 2 2 0

Third proof: consider the following two Euclidean norms A and B:

Let A a a a B b b bn n= + +¼+ = + +¼+1
2

2
2 2

1
2

2
2 2,

By the arithmetic-geometric means inequality, we have

å
åi

n
i i

i
n i ia b

AB
a
A

b
B

( )
£ æ

è
ç

ö
ø
÷
æ

è
ç

ö

ø
÷+

æ

è
ç

ö

ø
÷

æ

è
çç

ö

ø
÷÷ =

1

2
1

2

2

2

2
,
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such that

å a b AB a a a b b bi i n n£ = + +¼+ + +¼+1
2

2
2 2

1
2

2
2 2

Thus, the following is yielded:

å å åa b a bi i i
n

i i
n

i( ) £ ( )( )2 2 2

Orthogonality
Orthogonality is described as a measure or degree of unrelatedness. For example, an 
orthogonal transformation of a vector yields a vector such that it is unrelated to the vector 
we transformed. The geometric interpretation of the inner product in terms of angle and 
length motivates much of the terminology we use in regard to those spaces. Indeed, an 
immediate consequence of the Cauchy-Schwarz inequality is that it justifies defining the 
angle between two non-zero vectors:

Angle x,y( ) =
*

arccos
,x y

x y

Outer Product
The tensor product of two vectors is related slightly to the inner product previously 
defined. A tensor product is a way of creating a new vector space analogous to 
multiplication of integers:

Let u and v equal two vectors where x , , =[ ] =[ ]x x x y y y y
T

1 2 3 1 2 3, , ,

y x yx

y

y

y

x x x

y x y x y x

y x y x y x

y x y x y x

TÄ = = * =
1

2

3

1 2 3

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

Eigenvalues and Eigenvectors
An eigenvalue is a number derived from a square matrix, which corresponds to a 
specific eigenvector, also associated with a square matrix. Together, they “provide 
the eigendecomposition of a matrix.” Plainly spoken, the eigendecomposition of a 
matrix merely provides the matrix in the form of eigenvectors and their corresponding 
eigenvalues. Eigendecomposition is important because it is a “method by which we can 
find the maximum (or minimum) of functions involving matrices.”
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Eigendecomposition:

Au u=l

A I u-( ) =l 0

Where A = square matrix, and u = eigenvector to matrix A (if length of vector changes 
when multiplied by A):

l = eigenvalue to corresponding eigenvecvtor u

Assume the following is also true:

A =
æ

è
ç

ö

ø
÷

2 3

2 1

Therefore:

u u1 2 1 2

3

2

1

1
4 1= æ

è
ç

ö
ø
÷ = -æ

è
ç

ö
ø
÷ = = -, , ,l l

For most applications, the eigenvectors are normalized to a unit vector as such:

u uT =1

Eigenvectors of A furthermore are put together in a matrix U. Each column of U is 
an eigenvector of A. The eigenvalues are stored in a diagonal matrix ,̂ where the trace, 
or diagonal, of the matrix gives the eigenvalues. Thus we rewrite the first equation 
accordingly:

AU UA=

A U U= Ù -1

=
-é

ë
ê

ù

û
ú -
é

ë
ê

ù

û
ú -
é

ë
ê

ù

û
ú

3 1

2 1

4 0

0 1

2 2

4 6

=
é

ë
ê

ù

û
ú

2 3

2 1

A graphical representation of eigenvectors is given in Figure 2-6.
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Eigenvectors and eigenvalues become an integral part of understanding a technique 
discussed later in our discussion regarding a variable selection technique called principal 
components analysis (PCA). The eigendecomposition of a symmetric positive semi-
definite matrix yields an orthogonal basis of eigenvectors, each of which has a non-negative 
eigenvalue. PCA studies linear relations among variables and is performed on the covariance 
matrix, or the correlation matrix, of the input data set. For the covariance or correlation 
matrix, the eigenvectors correspond to principal components and the eigenvalues to the 
variance explained by the principal components. Principal component analysis of the 
correlation matrix provides an orthonormal eigenbasis for the space of the observed data: 
in this basis, the largest eigenvalues correspond to the principal components that are 
associated with containing the most covariability of the observed dataset.

Linear Transformations
A linear transformation is a mapping V W®  between two modules that preserves the 
operations of addition and scalar multiplication. When V = W, we call this a linear 
operator, or endomorphism, of V. Linear transformations always map linear subspaces 
onto linear subspaces, and sometimes this can be in a lower dimension. These linear 
maps can be represented as matrices, such as rotations and reflections. An example of 
where linear transformations are used is specifically PCA. Discussed in detail later, PCA is 
an orthogonal linear transformation of the features in a data set into uncorrelated 
principal components such that for K features, we have K principal components. I discuss 
orthogonality in detail in the following sections, but for now I focus on the broader 
aspects of PCA. Each principal component retains the variance from the original data set 
but gives us a representation of it such that we can infer the importance of a given 
principal component based on the contribution of the variance to the data set it provides. 
When translating this to the original data set, we then can remove features from the data 
set that we feel don’t exhibit significant amounts of variance.

Figure 2-6. Visulaization of eigenvectors

https://en.wikipedia.org/wiki/Explained_variance#Explained variance


Chapter 2 ■ MatheMatiCal review

37

A function  : n m®  is called a linear transformation if the following is true:

 ax a x for every x and an( ) = ( ) Î Î 

  x y x y for every x y n+( ) = ( )+ ( ) Î, , 

When we fix the bases for ℝn and ℝm, the linear transformation ℒ can be represented 
by a matrix A. Specifically, there exists A mxnÎ  such that the following representation 

holds. Suppose x nÎ  is a given vector and x ' is the representative of x with respect to 

the given basis for ℝm. If y x= ( )  and Y ' is the representative of y with respect to the 

given basis for ℝm, then

¢ =y Ax¢

We call A the matrix representation of ℒ with respect to the given bases for ℝn and ℝm.

Quadratic Forms
A quadratic form is a homogenous polynomial of the second degree in a number of 
variables and have applications in machine learning. Specifically, functions we seek to 
optimize that are twice differentiable can be optimized using Newton’s method. The 
power in this is that if a function is twice differentiable, we know that we can reach an 
objective minimum.

A quadratic form f n m: ®  is a function such that the following holds true:

F x x QxT( ) =

Where Q is an n x n real matrix. There is no loss of generality in assuming Q to be 
symmetric—that is, Q QT= .

Minors of a matrix Q are the determinants of the matrices obtained by successively 
removing rows and columns from Q. The principal minors are detQ itself and the 
determinants of matrices obtained by removing an ith row and an ith column.

Sylvester’s Criterion
Sylvester’s criterion is necessary and sufficient to determine whether a matrix is positive 
semi-definite. Simply, it states that for a matrix to be positive semi-definite, all the leading 
principal minors must be positive.

Proof: if real-symmetric matrix A has non-negative eigenvalues that are positive, 
it is called positive-definite. When the eigenvalues are just non-negative, A is said to be 
positive semi-definite.
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A real-symmetric matrix A has non-negative eigenvalues if and only if A can be 
factored as A B BT= ,  and all eigenvalues are positive if and only if B is non-singular.

Forward implication: if A RnxnÎ  is symmetric, then there is an orthogonal matrix P 

such that A PDPT= ,  where D diag n= ¼( )l l l1 2 , ,  is a real diagonal matrix with entries 

such that its columns are the eigenvectors of A. If li ³ 0  for each I, D
1

2  exists.

Reverse implication: if A can be factored as A = B^TB, then all eigenvalues of A are 
non-negative because for any eigenpair (x, λ)

l =
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ç
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÷ =
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Orthogonal Projections
A projection is linear transformation P from a vector space to itself such that P P2 = .  
Intuitively, this means that whenever P is applied twice to any value, it gives the same 
result as it it were applied once. Its image is unchanged and this definition generalizes 
the idea of graphical projection moreover.   is a subspace of 

 n x xif x x for all .1 2 1 2, ,Î ® + Î Î a b a b  The dimension of this subspace is also 

equal o the maximum number of linearly independent vectors in .  If   is a subspace of 

Rn, the orthogonal complement of  ,  demoted  ^ ,  consists of all vectors that are 

orthogonal to every vector in .  Thus, the following is true:

 ^ = = Î{ }x v x for all vT: 0

The orthogonal complement of   is also a subspace. Together,  and ^  span Rn in 

the sense that every vector x nÎ  can be represented as

x x x= +1 2

where x x1 2Î Î ^ and .  We call the above representation the orthogonal decomposition 

of x with respect to .  We say that x
1
 and x

2
 are orthogonal projections of x onto the 

subspaces   and  ^  respectively. We write n = Ä ^  ,  and say that ℝn is a direct sum 

of   and  ^ .  We say that a linear transformation of P is an orthogonal projector onto   

for all x nÎ ,  we have Px x PxÎ - Î ^ and .

Range of a Matrix
The range of a matrix defines the number of column vectors it contains.

Let A mxnÎ .  The range, or image, of A, is written as the following:

 A Ax x n( ) Î{ } : 
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Nullspace of a Matrix
The nullspace of a linear map L V W: ®  between two vector spaces is the set of all 

elements of v of   for which  v( ) = 0,  where zero denotes the zero vector in .

The nullspace, or kernel, of A is written as the following:

 A x Axn( ) Î ={ }  : 0

Hyperplanes
Earlier I mentioned the significance of the support vector machine and the hyperplane. 
In the context of regression problems, the observations within the hyperplane are 
acceptable as response variable solutions. In the context of classification problems, 
the hyperplanes form the boundaries between different classes of observations 
(shown in Figure 2-7).

Figure 2-7. Visualization of hyperplane

We define a hyperplane as a subspace of one dimension less than its ambient space, 
otherwise known as the feature space surrounding the object.

Let u u u un= ¼[ ] Î1 2, , , , u  , where at least one of the u
i
 is non-zero. The set of all 

points x x x xn

T= ¼[ ]1 2, , ,  that satisfy the linear equation

u x u x u x vn n1 1 2 2+ +¼+ =
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is called a hyperplane of the space ℝn. We may describe the hyperplane with the following 
equation:

x u x vn TÎ ={ } :

A hyperplane is not necessarily a subspace of ℝn because, in general, it does not 
contain the origin. For n = 2, the equation of the hyperplane has the form u x u x v1 1 2 2+ = , 
which is the equation of a straight line. Thus, straight lines are hyperplanes in ℝ2. In ℝ3, 
hyperplanes are ordinary planes. The hyperplane H divides ℝn into two half spaces, 
denoted by the following:

H x u xn T
+ = Î ³{ } : 0 ,

H x u xn T
- = Î £{ } : 0 .

Here H+  is the positive half-space, and H-  is the negative half-space. The 
hyperplane H itself consists of the points for which á - ñ =u x a, 0 , where a a a an

T= ¼[ ]1 2, , ,  
is an arbitrary point of the hyperplane. Simply stated, the hyperplane H is all of the points 
x for which the vectors u and x – a are orthogonal to one another.

Sequences
A sequence of real numbers is a function whose domain is the set of natural numbers 
1,2,…,k, and whose range is contained in ℝ. Thus, a sequence of real numbers can be 
viewed as a set of numbers {x

1
, x

2
, …, x

k
}, which is often also denoted as {x

k
}.

Properties of Sequences
The length of a sequence is defined as the number of elements within it. A sequence of 
finite length n is also called an n-tuple. Finite sequences also include sequences that are 
empty or ones that have no elements. An infinite sequence refers to a sequence that is 
infinite in one direction. It is therefore described as having a first element, but not having 
a final element. A sequence with neither a first nor a final element is known as a two-way 
infinite sequence or bi-infinite sequence.

Moreover, a sequence is said to be monotonically increasing if each term is greater 
than or equal to the one before it. For example, the sequence an n( ) =1  is monotonically 

increasing if an only if for all a an n+ ³1 .  The terms non-decreasing and non-increasing are 

often used in place of increasing and decreasing in order to avoid any possible confusion 
with strictly increasing and strictly decreasing respectively.
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If the sequence of real number is such that all the terms are less than some real 
numbers, then the sequence is said to be bounded from above. This means that there 
exists M such that for all n, a

n
 ≤ M. Any such M is called an upper bound. Likewise, if, for 

some real m, a mn ³  for all n greater than some N, then the sequence is bounded from 
below, and any such m is called the lower bound.

Limits
A limit is the value that a function or sequence approaches as the input or index 
approaches some value. A number x*Î  is called the limit of the sequence if for any 

positive ϵ there is a number K such that for all k K xk x> - <*,  :

x xk
k

*

®¥
= lim

A sequence that has a limit is called a convergent sequence. Informally speaking, a 
singly infinite sequence has a limit, if it approaches some value L, called the limit, as n 
becomes very large. If it converges towards some limit, then it is convergent. Otherwise it 
is divergent. Figure 2-8 shows a sequence converging upon a limit.

Figure 2-8. A function converging upon 0 as x increases

We typically speak of convergence within the context of machine learning and 
deep learning with reaching an optimal solution. This is ultimately the goal of all of our 
algorithms, but this becomes more ambiguous with the more difficult use cases readers 
encounter. Not every solution has a single global optimum—instead it could have local 
optima. Methods of avoiding these local optima are more specifically addressed in later 
chapters. Typically this requires parameter tuning of machine learning and deep learning 
algorithms, the most difficult part of the algorithm training process.



Chapter 2 ■ MatheMatiCal review

42

Derivatives and Differentiability
Differentiability becomes an important part of machine learning and deep learning, 
most specifically for the purpose of parameter updating. This can be seen via the back-
propagation algorithm used to train multilayer perceptrons and the parameter updating 
of convolutional neural networks and recurrent neural networks. A derivative of a 
function measures the degree of change in one quantity to the degree of another. One of 
the most common examples of a derivative is a slope (change in y over x), or the return of 
a stock (price percentage change over time). This is a fundamental tool for calculus but is 
also the basis of many of the models we will study in the latter part of the book.

A function is considered to be affine if there exists a linear function  : n m®  and 
a vector y mÎ  such that

A x x y( ) = ( )+

for every x nÎ .  Consider a function f n m: ®  and a point x n
0Î .  We want to find 

an affine function A that approximates f near the point x0. First, it’s natural to impose this 
condition:

A x f x0 0( ) = ( )

We obtain y f x x= ( )- ( )0 0 .  By the linearity of L,

   + = ( )- ( )+ ( ) = -( )+ ( )y x x f x x x f x0 0 0 0

A x x x f x( ) = -( )+ ( ) 0 0

We also require that A(x) approaches f(x) faster than x approaches x
0
.

Partial Derivatives and Gradients
Also utilized heavily in various machine learning derivations is the partial derivative. 
It is similar to a derivative, except we only take the derivative of one of the variables in 
the function and hold the others constant, whereas in a total derivative all the variables 
are evaluated. The gradient descent algorithm is discussed in Chapter 3, but we can 
discuss the broader concept of the gradient itself now. A gradient is the generalization of 
the concept of a derivative when applied to functions of several variables. The gradient 
represents the point of greatest rate of increase in the function, and its magnitude is the 
slope of the graph in that direction. It’s a vector field whose components in a coordinate 
system will transform when going from one system to another:

Ñ ( ) = ( ) = ( )
f x grad f x

df x

dx

http://dx.doi.org/10.1007/978-1-4842-2734-3_3
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Hessian Matrix
Functions can be differentiable more than once, which leads us to the concept of the 
Hessian matrix. The Hessian is a square matrix of second-order partial derivatives of a 
scalar values function, or scalar field:

H =
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If the gradient of a function is zero at some point x, then f has a critical point at x. 
The determinant of the Hessian at x is then called the discriminant. If this determinant 
is zero, then x is called a degenerate critical point of f, or a non-Morse critical point of f. 
Otherwise, it is non-degenerate.

A Jacobian matrix is the matrix of first-order partial derivatives of a vector values 
function. When this is a square matrix, both the matrix and its determinant are referred to 
as the Jacobian:
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Summary
This brings us to the conclusion of the basic statistics and mathematical concepts that 
will be referenced in later chapters. Readers should feel encouraged to check back with 
this chapter when unsure about anything in later chapters. Moving forward, we’ll address 
the more advanced optimization techniques that power machine learning algorithms, as 
well as those same machine learning algorithms that formed the inspiration of the deep 
learning methods we’ll tackle afterwards.
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CHAPTER 3

A Review of Optimization 
and Machine Learning

Before we dive into the models and components of deep learning in depth, it’s important 
to address the broader field it fits into, which is machine learning. But before that, I want 
to discuss, if only briefly, optimization. Optimization refers to the selection of a best 
element from some set of available alternatives. The objective of most machine learning 
algorithms is to find the optimal solution given a function with some set of inputs. As 
already mentioned, this often comes within the concept of a supervised learning problem 
or an unsupervised learning problem, though the procedures are roughly the same.

Unconstrained Optimization
Unconstrained optimization refers to a problem in which we much reach an optimal 
solution. In contrast to constrain optimization, there are constraints placed on what value 
of x we choose, allowing us to approach the solution from significantly more avenues. An 
example of an unconstrained optimization problem is the following toy problem:

Minimize f x where f x x x( ) ( ) = ∈ −[ ], , ,2 100 100

Figure 3-1 visualizes this function.
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In this problem, because there are no constraints, we are allowed to choose whatever 
number for x is within the bounds defined. Given the equation we seek to minimize, the 
answer for x is 100. As we can see, we minimize the value of f(x) globally when we choose x. 
Therefore, we state that x = 100 = x*, which is a global minimizer of f(x). In contrast, here’s a 
constrained optimization problem:

Minimize f x s t subject to x( ) ( ) ∈, . . Ω

where f x x Subject to x( ) = ∈2 Ω

The function f : n →  that we want to minimize is a real-valued function and is 
called the objective/cost function. The vector x is a vector of length n consisting of 
independent variables where x x= …[ ] ∈1 2, , ,x xn

T n . The variables within this vector 

commonly are referred to as decision variables. The set Ω is a subset of ℝ called the 
constraint/feasible set. We say that the preceding optimization problem is a decision 
problem in which we must find the best vector of x that satisfies the objective subject to 
the constraint. Here, the best vector of x would result in a minimization of the objective 
function. In this function, because we have a constraint placed, we call this a constrained 
optimization problem. x∈Ω  is known as the set constraint. Often, this takes the form of

Ω= ( ) = ( ) ≤{ }x : ,h x g x0 0

where h and g are some given functions. h and g are referred to as the functional 
constraints.

Imagine that we are still viewing the same function displayed in Figure 3-1, except 
that our feasible set is Ω. For simplicity’s sake, let’s say that h(x) and g  (x) are equal to the 
following:

h x g x( ) = ( ) = −10 x

Figure 3-1. Visualization of f(x)
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As such, the answer for the constrained optimization problem would be x = 10, because 
this is closest to the global minimizer of f(x), x = 100, while also satisfying the functional 
constraints listed in Ω. As we can see, the constraint set limits our ability to choose solutions, 
and therefore compromises must be made. We often encounter constrained optimization in 
a practical sense on a daily basis. For example, say a business owner is trying to minimize the 
cost of production in their factory. This would be a constrained optimization problem, 
due to the fact that should the business owner not want to adversely affect their business 
(and still continue production), there likely is a production output constraint that they 
will have placed on them, limiting the possible choices they have.

Most machine learning problems readers will encounter are framed in the scope 
of a constrained optimization problem, and that constraint is usually a function of the 
data set being analyzed. The reason for this is often because prior to the development of 
deep learning models, this was the closest method by which we could approach artificial 
intelligence. Broadly speaking, most machine learning algorithms focused on regression 
are constrained optimization problems, where the objective is to minimize the loss of 
accuracy within a given model. As we briefly discussed in the previous toy problem, there 
are two kinds of minimizers: local and global.

Local Minimizers
Assume that f n m: →  is a real-values function defined on some set Ω∈n . A point x* 

is a local minimizer of f over Ω f x f x( ) ≥ ( )∗  for all x∈Ω .

Global Minimizers
Assuming the same function f and its tertiary properties, a point x* is a global minimizer 
of f over Ω if f x f x( ) ≥ ( )*  for all x .∈Ω

Broadly speaking, there can be multiple local minimizers in a given problem, but if 
there is a global minimum, there can only been one. In Figure 3-2, we can see this with 
respect to a mapping of a function.

Figure 3-2. Local versus global minima
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Depending on how much of the function we are evaluating at a given moment, we can 
choose a multitude of local minima. But if we’re evaluating the full range of this function, 
we can see that there is only one global minimum. It is useful now to discuss how exactly 
we know that a solution we have reached, mathematically speaking, is optimal.

Conditions for Local Minimizers
In this section, we derive conditions for a point x* to be a local minimizer. We use 
derivatives of a function f n: → .  ℝecall that the first-order derivative of f, denoted Df  is

Df
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The first derivate/gradient gives us the direction of an approximation of the 
function, f, at a specific point. The second derivative, or Hessian, gives us a quadratic 
approximation of f at a point. Both the Hessian and the gradient can be used to find 
local solutions for optimization problems. The gradient is used, as discussed earlier, 
for parameter updating such as in linear regression via gradient descent. However, 
the Hessian also can be used for parameter updating in the context of deep learning. 
I talk about this more later, but recurrent neural networks typically are used in the 
case of modeling data that occurs in sequences such as time series or text segments. 
Specifically, recurrent neural networks often are difficult to train by a product of certain 
data sequences having long-term data dependencies. When training other deep learning 
architectures, we encounter training problems due to the very large number of weights. 
This creates a large Hessian matrix, virtually making Newton’s method defunct.

Hessian-free optimization focuses on minimizing an objective function where 
instead of computing the Hessian, we compute the matrix-vector product. Provided that 
the Hessian matrix is positive-definite, we converge to a solution. By solving the following 
equation, we can effectively use Newton’s method on the weight matrix to train a network

H
f d f

p =
∇ +( )−∇ ( )

→
lim



0

θ θ

where H
p
 is the matrix-vector product, θ is some parameter (in this case, weights), and d is 

a user determined value.
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In cases where the Hessian matrix is not positive-definite, convergence upon a 
solution is not guaranteed and leads to radically different results. We can, however, 
approximate the Hessian matrix using a Gauss-Newton approximant of the Hessian, 
whereupon the Hessian equals

H J JT=

where J is the Jacobian matrix of the parameter.
This yields a guaranteed positive-definite matrix and therefore validates the 

assumptions necessary to guarantee convergence. Moving forward from regression, I want to 
discuss one of the mathematical underpinnings of classification algorithms: neighborhoods.

Neighborhoods
Neighborhoods are an important concept in the paradigm of classification algorithms. 
For example, the preeminent algorithm that uses this concept is K-nearest neighbors. 
One of the simpler algorithms, the user-defined K parameter determines the number of 
neighboring data points that are used to ultimately classify an object to a class of points. 
We define a neighborhood of a point as a set of points containing the aforementioned 
point without leaving the set. Consider a point x n∈ . A neighborhood of this set would 
be the equation

y y xn∈ − <{ } : 

where ϵ is some positive number defined in a given context. ϵ represents the bound that 
defines the size of a given neighborhood. Visually, we can consider a neighborhood as a 
sphere, or a space between two half spaces, with x as the center and ϵ as the radius, as in 
Figure 3-3.

Figure 3-3. Visualization of a neighborhood of a point x
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This will be an important to understanding any algorithms that use epsilon intensive 
loss to define separation of observations. Epsilon intensive loss is used particularly in 
the case of support vector machines, but K-nearest neighbors draws upon the concept of 
neighborhoods broadly to define observations within a given class.

Interior and Boundary Points
A point x S∈  is said to be an interior point of the set S if the set S contains some 
neighborhood of x. If all points within some neighborhood of x are also in S, the set of all the 
interior points of S is called the interior of S. A point x is said to be a boundary point of the 
set S if every neighborhood of x contains a point in S and a point not in S. Similarly, all the 
boundary points of S take the name boundary. A set is open if it contains a neighborhood of 
each of its points, or has no boundary points. A set is closed if it contains its boundary. A set is 
compact if it is both closed and bounded.

We’ve now reached the conclusion of our review of optimization. Now that we have 
addressed the prerequisite information necessary, we can discuss machine learning in 
depth and grasp the broader implications of the algorithms within this paradigm.

Machine Learning Methods: Supervised Learning
Machine learning can be segregated into two broad paradigms: supervised and 
unsupervised learning. Supervised learning is distinguished by the fact that prior to fitting 
a model, we know what the label/response variable Y is. As such, we can evaluate the 
efficacy of a model in an efficient manner. In unsupervised learning, we don’t have this 
information, which doesn’t allow us to determine the degree to which we are correct. 
Prior to discussing the challenges of both paradigms, it’s reasonable to discuss the 
development of this field

History of Machine Learning
Machine learning was developed to create artificial intelligence in the mid-1950s. 
Its focus shifted towards creating programs that improved upon iteration, but were 
specifically made to accomplish one task and could generally be viewed as a method of 
function optimization. Artificial intelligence eventually began to become its own field, 
and as the end of the 20th century came, machine learning started to become a more 
developed and mature science. Machine learning takes contributions and inspiration 
from many fields, such as statistics and computer science, and the overlap is such that 
many statistics programs often include and encourage their students to become well 
versed in the techniques. The upcoming sections will address some of the most common 
machine learning algorithms, including some of those that serve as inspiration for the 
deep learning models described in the following chapters.
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What Is an Algorithm?
Prior to this point, I’ve occasionally referred to algorithms. Simply stated, an algorithm 
is a process that we create for the purpose of accomplishing some task. In the following 
section, prior to tackling deep learning models in the next chapters, we will review 
important machine learning algorithms that will be utilized in deep learning models in 
addition to algorithms that are useful in the general practice of data science.

Regression Models
Regression refers to a set of problems in which we are trying to predict specific values. 
These could be prices of homes, the salary of an employee, or the length of a flower 
petal. More importantly, regression can also be used to measure the degree to which an 
explanatory variable(s), x, affect the response variable, Y. 

Linear ℝegression
Imagine we’re trying to predict the television ratings of a given show. We know, due to 
prior research, that the most popular demographic for this show is people aged 25–50 
years old. We also see that there is a strong linear correlation between these two variables. 
As such, we decide to consider this our explanatory, or x, variable and the ratings our 
response, or Y, variable. How exactly would we proceed? Simple linear regression would 
be the most logical method. Simple linear regression utilizes relatively basic concepts for 
modeling explanatory variable(s), x, to a response variable, Y. Here we have the model

E Y x xk k( ) = + +…+β β β0 1 1 ,

where β
0
 is the y-intercept and β

1
 through β

k
 are the partial slopes corresponding to 

each explanatory variable x
1
 through x

k
, where k = 1, 2, …, m, and m = the number of 

explanatory variables. This is known as a linear probabilistic model, because we’re 
modeling the expectation of Y based on the assumption that it lies somewhere within a 
distribution of possible points from the ordinary least squares prediction of the point.

Ordinary Least Squares (OLS)
Ordinary least squares is the most basic form of linear regression. The intuition behind 
why we pick that specific E(Y) value at a specific point x is that we want to find a value 
for E(Y) that minimizes the squared difference between the actual and predicted Y. 
When the preceding assumptions are met in a given experiment, we find that the OLS 
method yields minimum variance and unbiased estimator of Y and also is the maximum 
likelihood estimator for Y.
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Assumptions underlying this model are the following:

•	 Error terms are normally distributed.

•	 There is constant variance when observing the error terms.

•	 Observations of data are independently and identically 
distributed.

•	 There is no multicollinearity across explanatory variables.

The intuition behind why we pick that specific E(Y) value at a specific point x is that 
we want to find a value for E(Y) that minimizes the squared difference between the actual 
and predicted Y. When the preceding assumptions are met in a given experiment, we find 
that the OLS method yields minimum variance and unbiased estimator of Y and also is 
the maximum likelihood estimator for Y. Imagine we have an xy plot, similar to the one 
show in Figure 3-4.

There are in theory an infinite number of E(Y) line plots that we could make. 
However, only one solution yields an optimal solution that minimizes the error between 
E(Y) and y the most. Assuming there is only one explanatory variable, we derive the 
regression coefficient as the following:

β̂ =
−
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Figure 3-4. Plotting of the response variable x
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Alternatively, the regression coefficient equation can be written

ˆ argminβ β
β

= −y x

given by

β̂ = ( )−X X X yT T1

The purpose of what we are doing here is to minimize the magnitude of the regression 
coefficient so that when we multiply it by x. Simply stated, we are trying to fine a line of 
best fit between the data and the regression line such that we minimize the average error 
between the predictions and actual data points. After we derive the regression coefficient, 
we can find the y-intercept, or the value of y when x = 0, as the following:

β β0 = −y x

From this, we have all of the components of the E(Y) equation and can now model 
the data.

That said, using OLS to find a solution is not always the most optimal method. In 
cases of relatively small and simple data, utilizing OLS isn’t particularly a problem. When 
data is complex and large, and we haven’t satisfied the assumptions of OLS regression, it 
can be more effective to utilize the gradient descent method.

Gradient Descent Algorithm
As mentioned, the gradient of a function represents the point of greatest rate of increase 
in the function, and its magnitude is the slope of the graph in that direction. With that in 
mind, how can we apply the concept of a gradient to an algorithm in order to iteratively 
improve that? Gradient descent is an iterative algorithm in which you update a parameter 
by the negative of the gradient subject to some threshold you define or a certain number 
of iterations. The gradient is usually multiplied by a learning rate, which determines the 
speed of convergence toward an optimal solution for the function.

In the context of linear regression, our goal is to minimize the residual value between 
y^ and y, known as the error function, given by

J
m

h x y
i

m
i iθ θ θ0 1

1

21

2
,( ) = ( )−( )

=
∑

where hθ(xi) is the predicted y value.
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If our objective is to minimize the cost function as quick as possible, and the gradient 
is the vector that points in the steepest direction, we want to take the gradient of the cost 
function. The gradient is given by the following:

d

d m
h x y

i

m
i i

θ
θ θ θ

0
0 1

1

1
,( ) = ( )−( )

=
∑

d

d m
h x y x

i

m
i i

jθ
θ θ θ

1
0 1

1

1
,( ) = ( )−( )( )

=
∑

To update the parameters, both the y-intercept and the regression coefficient, we 
calculate the following until the algorithm converges upon an optimal solution:

θ θ α
θ

θ θ0 0
0

0 1: ,= − ( )d

d

θ θ α
θ

θ θ1 1
1

0 1: ,= − ( )d

d

Multiple Linear Regression via Gradient Descent
The intuition behind multiple linear regression via gradient descent is the same as with 
simple linear regression—there is just a modification to accommodate for the multiple 
partial slopes being adjusted upon each iteration:

θ θ α
θ

θ θ θ0 0
0

0 1: , , ,= − …( )d

d n

θ θ α
θ

θ θ θj j
j

n

d

d
: , , ,= − …( )0 1

Learning Rates
One last aspect to discuss is the learning rate, denoted as α, which in fact is one of the 
most important aspects of the gradient descent algorithm. The learning rate determines 
the speed at which the gradient descent algorithm converges upon an optimal solution. 
Usually, the learning rate is initialized at a relatively small value—typically .01 or less. 
That said, choosing an optimal learning rate isn’t necessarily always obvious, and not 
doing so can affect the “solution” yielded. Usually, gradient descent algorithms have 
two stopping conditions: 1) an optimal solution has been found, and 2) the maximum 
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number of iterations allowed have been reached. The following problems associated with 
poor algorithm performance are due to the following situations:

•	 The learning rate is too small: In the instance that we choose a 
learning rate that’s too small, the solution that the algorithm 
gives is in fact not the optimal solution, and we reach it due to 
the second stopping condition. Some might say that a way to 
avoid this is by choosing a learning rate is to increase the number 
of iterations, but that very well can defeat the purpose of this 
method, which is its computational efficiency.

•	 The learning rate is too large: If we are to choose a learning rate 
that is considerably larger than necessary, we may also never 
reach an optimal solution, though this one is due to a different 
reason. When the learning rate is too large, we find that the cost 
function upon each iteration may overcorrect and give us updated 
values for the coefficient that are far too small or far too large. As 
such, our reaching a solution would be by luck, and in most cases 
we would end up reaching the maximum solution.

Choosing An Appropriate Learning Rate
Now that we have an understanding of what the problems associated with choosing 
an incorrect learning rate are, we need to find out how to choose one. One possible 
solution is to hardcode various gradients and see how the algorithms perform across each 
iteration. In the following method, we update the step size upon each iteration of the 
gradient descent algorithm.

The bold driver approach compares the most recent gradient value to the gradient 
value derived upon the prior iteration. If the error has decreased, increase the learning 
rate by a moderate amount. If the error has increased, decrease the learning rate by 50%.

In the following code example, we are modifying the iris data set. This data set dates 
back to ℝonald Fisher; he used it for an initial set of experiments. It is popular when 
displaying fundamental aspects of various statistical and machine learning algorithms. 
Here, we’re taking the first column of the iris data set and modeling that against an X 
variable (which is merely length), such that the data displayed forms a linear pattern. 
This is just an example to display the mechanics of OLS linear regression. In the following 
code, we fit the data to the OLS regression via the lm() function. We then calculate the 
sum of squared residuals, which we denote as Cost in the output. We then extract the 
regression coefficients for this model from the lm() function and then output these two 
attributes in a data frame:

#Modifying Data From Iris Data Set
data(iris)
Y <-  matrix(iris[,1])
X <-  matrix(seq(0,149, 1))
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olsExample <- function(y = Y, x = X){
 y_h <- lm(y ~ x)(1)
  y_hf <- y_h$fitted.values
  error <- sum((y_hf - y)^2) (2)
  coefs <- y_h$coefficients (3)
  output <- list("Cost" = error, "Coefficients" = coefs)
  return(output)
}

When we run the code, we observe the results shown in Figure 3-5.

Cost is the sum of squares and the Coefficients accordingly are listed as the y 
intercept followed by the partial slope for the x variable. We will use this as a baseline for 
comparing the performance of linear regression via gradient descent. Again, the purpose 
of this explanation is to show the efficiency and ability of the gradient descent algorithm 
to replicate the results of a simple OLS regression:

#Gradient Descent Without Adaptive Step
gradientDescent <- function(y = Y, x = X, alpha = .0001, epsilon = .000001, 
maxiter = 300000){
  #Intializing Parameters
  theta0 <-  0
  theta1 <-  0
  cost <- sum(((theta0 + theta1*x) - y)^2)
  converged <- FALSE
  iterations <- 1

Moving forward, we define a function for the implementation of linear regression via 
gradient descent. This gradient descent algorithm has a constant learning rate, though 
you can alter this parameter, as well as the loss tolerance, should you choose to use this 
implementation on other data sets. We have defined the maximum amount of iterations 
as 300,000, which will force the algorithm to cease at the solution should it not reach an 
optimal one before that. When analyzing the code specifically, we begin by initializing the 
parameters theta0 and theta1 at 0. Users may feel free to alter the code and initialize the 
parameters with values randomly sampled from a normal distribution, but should divide 

Figure 3-5. Output of OLS regression function
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these values by 10 to ensure that they are not overly large. We initialize the cost function 
as the SSℝ of 0 minus all y values, from which we will begin to alter the parameters:

#Gradient Descent Algorithm
while (converged == FALSE){
  gradient0 <- as.numeric((1/length(y))*sum((theta0 + theta1*x) - y))
  gradient1 <- as.numeric((1/length(y))*sum((((theta0 + theta1*x) - y)*x)))

  t0 <- as.numeric(theta0 - (alpha*gradient0))
  t1 <- as.numeric(theta1 - (alpha*gradient1))

  theta0 <- t0
  theta1 <- t1

  error <- as.numeric(sum(((theta0 + theta1*x) - y)^2))

  if (as.numeric(abs(cost - error)) <= epsilon){
    converged <- TRUE
  }
    cost <- error
    iterations <- iterations + 1
  if (iterations == maxiter){
    converged <- TRUE
  }
}

Although we haven’t converged on a solution, or we have not reached the maximum 
amount of iterations allowed when executing the function, we create the gradient0 
and gradient1 variables, which correspond to the parameters theta0 and theta1 
respectively. We then update the theta0 and theta1 parameters using the gradient 
contained within the gradient0 and gradient1 variables. After this, we calculate the 
error, and continue looping from while (converged == FALSE) until the stopping 
condition has been reached:

   output <- list("theta0" = theta0, "theta1" = theta1, "Cost" = cost, 
"Iterations" = iterations)

  return(output)
}

Here, we’re running a simple linear regression where the y and x variables are initialized 
randomly. When we run the code as stated, we get the results shown in Figure 3-6.
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theta0 is the y-intercept, theta1 is the partial slope for the x variable, cost is the 
sum of squares, and iterations is the number of iterations performed. Here, we observe 
lower regression coefficients that are roughly the same baseline sum of squares error. 
However, if we’re to use a learning rate that’s too large, we often will get an error because 
the regression coefficients have become infinitely large. When the learning rate is too 
small, we notice what’s shown in Figure 3-7.

We see that the algorithm doesn’t converge upon the minimum, but reaches a 
feasible solution and is cut off by the loss tolerance we set. Incidentally, we’re also near 
the maximum number of iterations allowed. The consequence of incorrectly choosing 
an algorithm is relative to the context in which a given algorithm is being applied. But all 

Figure 3-7. Output of gradient descent with small learning rate

Figure 3-6. Output of gradient descent without adaptive step function
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users should be careful to evaluate the results they find on any machine learning or deep 
learning algorithm. As such, it’s important that we are as confident as humanly possible 
when choosing a solution.

In the next example, we run the same algorithm using an adaptive step size to 
compare the performance:

#Gradient Descent with Adaptive Step
adaptiveGradient <- function(y = Y, x = X, alpha = .0001, epsilon = .000001, 
maxiter = 300000){
  #Intializing Parameters
  theta0 <-  0
  theta1 <-  0
  cost <- sum(((theta0 + theta1*x) - y)^2)
  converged <- FALSE
  iterations <- 1

  #Gradient Descent Algorithm
  while (converged == FALSE){
    gradient0 <- as.numeric((1/length(y))*sum((theta0 + theta1*x) - y))
    gradient1 <- as.numeric((1/length(y))*sum((((theta0 + theta1*x) - y)*x)))

    t0 <- as.numeric(theta0 - (alpha*gradient0))
    t1 <- as.numeric(theta1 - (alpha*gradient1))

    delta_0 <- t0 - theta0
    delta_1  <- t1 - theta1
    if (delta_0 < theta0){
      alpha <- alpha*1.10
    } else {
      alpha <- alpha*.50
    }

Here, we apply the same gradient descent function, except now we apply the bold 
driver approach so that we have an adaptive learning rate. The bold driver approach alters 
the learning rate from one individual iteration to the next based on the prior result. Simply 
stated, if the gradient increases from one iteration to the next, the learning rate increases 
by 10%. If the gradient decreases, we decrease the learning rate by 50%. ℝeaders can feel 
free to alter these parameters should they choose, to experiment on the results received:

    theta0 <- t0
    theta1 <- t1
    error <- as.numeric(sum(((theta0 + theta1*x) - y)^2))
    if (as.numeric(abs(cost - error)) <= epsilon){
      converged <- TRUE
    }
    cost <- error
    iterations <- iterations + 1
    if (iterations == maxiter){
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      converged <- TRUE
    }
  }
   output <- list("theta0" = theta0, "theta1" = theta1, "Cost" = cost, 
"Iterations" = iterations, "Learning.Rate" = alpha)

  return(output)
}

Upon executing this function, we receive the results shown in Figure 3-8.

Of the algorithms we have tested, and given our objective to minimize the cost and 
the regression coefficient size, linear regression via gradient descent with adaptive step 
size or the OLS method would be acceptable. As an interesting observation, the algorithm 
converged upon this solution significantly faster than the gradient descent method with a 
static learning rate did.

Newton’s Method
For instances in which we’re looking to minimize a quadratic function, Newton’s method 
often proves useful. Newton’s method is a way to find the roots of a function, or where 
f(x) is equal to 0. It was developed by Isaac Newton and Joseph ℝaphson. To calculate an 
optimal point, we derive the equation
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Figure 3-8. Output of gradient descent with adaptive learning rate functions
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where f' is the first derivative of a given function and f" is the second derivative of a given 
function. This is known as the secant method. Newton’s method works particularly well if 
the f’"(x) > 0, but if f”(x) < 0, it might not converge upon a global minimum. We know that 
Newton’s function will always converge to a global optimum if the Hessian of the function 
is positive semi-definite. Another drawback to Newton’s method is also that convergence 
is not guaranteed if the starting point is considerably far from the global minimum. In the 
instance that Newton’s method doesn’t converge upon the global minimum, there is a 
heuristic that can be used to overcome this, covered next.

Levenberg-Marquardt Heuristic
The Levenberg-Marquardt (LM) algorithm is most applicable when a function isn’t twice 
differentiable or its Hessian matrix isn’t positive-definite. The equation is given by the 
following:

x x F x I gk k k
k

k+
−

= − ( )+( )1
1

µ

Consider a square matrix F that isn’t positive-definite. The eigenvalues of this matrix 
may not be positive but are all real numbers. Consider a matrix

G F I= + µ

where µ ≥ 0.  The eigenvectos of G are λ µ+ . Therefore, the following must be true:

Gv F I vi i= +( )µ

= +Fv Ivi iµ

= +λ µi i iv v

= +( )λ µi iv ,

With this modification, all the eigenvalues of G are therefore positive, and then G 
would have to be positive definite. If μ is also sufficiently large enough, we can confirm 
that the direction that Newton’s algorithm chooses will always be toward the direction of 
steepest descent. The final modification to the algorithm will be to add in a step size:

x x F x I gk k k
k

k+
−

= − ( )+( )1
1

α µ
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What Is Multicollinearity?
Multicollinearity is a problem that many a data scientist will come across in the 
problems they solve. It’s a situation where the explanatory variables are nearly perfectly 
correlated with other. In this situation, it becomes difficult to use linear regression 
via OLS or gradient descent because the technique cannot accurately estimate the 
regression coefficients, often resulting in inflated values for these parameters. This is 
because it’s hard to distinguish the effect of one explanatory variable from another, and 
subsequently each explanatory variable’s effect on the response variable. As a product of 
multicollinearity, we observe the value of the regression coefficients changing, sometimes 
drastically, each time we initialize a linear regression algorithm. Ultimately, this renders 
traditional linear regression as a less preferable method for handling data that exhibits 
these types of patterns.

Testing for Multicollinearity
Very highly positive regression coefficients are one of the first tell-tale signs of 
multicollinearity. In addition to this, we should calculate the correlation of all the 
explanatory variables with each other. Correlation coefficients of .95 1≤ ≤ρ  should also 
raise red flags in the mind of a data scientist. Specifically, though, there is a statistic that 
we can use to determine whether we most definitely have multicollinearity in our data 
set, called variance inflation factor.

Variance Inflation Factor (VIF)
The VIF statistic is calculated on a range from 0 ≤ ≤∞VIF . Typically, the rule of thumb is 
that any VIF score that is > 5 indicates multicollinearity, and any score above 10 indicates 
severe multicollinearity. The statistic is calculated by regressing a given explanatory 
variable against the others and then using the result to calculate the coefficient of 
determination, yielding the following:

VIF
R

j kj
j
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−

= …
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1

2
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ℝidge ℝegression
To combat multicollinearity specifically, ridge regression was developed and is a useful 
technique. ℝelevant to our discussions of norms earlier (L1 versus L2), ridge regression 
uses an L2 norm to achieve an optimal solution. Here is the equation for ridge regression:

argmin
β

β λ βy X− +
2

2

2
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One of the key distinctions in ridge regression is the tuning parameter λ, which 
determines the degree to which the regression coefficients shrink. The technique gets the 
name ridge due to the fact that the L2 norm forms a spherical or circular shaped region 
where the optimal solutions for the regression coefficients exist are chosen along the 
“ridge” of this shape. Visually, this often looks like Figure 3-9.

Least Absolute Shrinkage and Selection Operator 
(LASSO)
Lasso is very similar to ridge regression except LASSO performs variable selection 
while regressing the explanatory and response variables. The key differentiation 
between LASSO and ridge regression is the fact that LASSO uses the L1 norm rather 
than the L2 norm, giving the selection region a square or cubic shape depending on the 
dimensionality of the data. In Figure 3-10, we can see the LASSO OLS estimate:

argmin
β

β λ βy X− +

Figure 3-9. Ridge regression OLS estimates
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Comparing ℝidge ℝegression and LASSO
Both methods are highly useful for instances in which your data suffers from 
multicollinearity, but in instances where you’re seeking to fit data as you would in a 
simple linear regression, these methods should be avoided, and the gradient methods 
along with the OLS method given earlier should be used. If you don’t have more than one 
explanatory variable, these methods won’t be of use to you. Although that’s unlikely to be 
the case in practical terms most times, it’s important to remember nonetheless.

Evaluating ℝegression Models
Beyond just building regression models, we need to find a way to determine how 
accurately the results yielded from a model are, and ultimately choose the best one on 
a case-by-case basis. In the case of regression, a useful method of evaluating machine 
learning models is by bootstrapping. Typically, bootstrapping involves running different 
regression models over several iterations using a data set that’s smaller than the original, 
and with the original observations in randomized order, and then sampling several 
statistics and comparing their values relative to the other models’ values. The process is 
as follows:

 1. Build several models.

 2. Collect sample statistics that we use as evaluators of each 
model over N iterations of the experiment.

Figure 3-10. LASSO regression
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 3. Sample each of these evaluators and collect statistics upon 
each iteration, such as:

  a. Mean

  b. Standard deviation

  c. Max

  d. Min

 4. Evaluate the results and pick the model that’s most effective 
given your objectives and situational constraints.

The rest of this section covers the evaluators you should pick during bootstrapping.

Coefficient of Determination (R 2)
As described in Chapter 2, the coefficient of determination is what we use to evaluate 
how accurately a model explains variability in y through the variability in x. The higher 
the R2 value, the better. That said, generally speaking, “good” R2 values should be in the 
following range: .70 ≤ R2 ≤ .95. Anything lower than .70 should be viewed as generally 
unacceptable, and anything higher than .95 should be examined to see if there is 
overfitting in the model. Although this won’t change across a given iteration very much, 
we still should evaluate this objectively across models.

Mean Squared Error (MSE)
The MSE measures the distance of a given predicted value of y from the average value 
of the actual response variable. Our objective with any regression model is to minimize 
this statistic as much as possible, so we will want to pick the model that has the lowest 
MSE relative to the others being examined. This will be the evaluator that shows the most 
variance across models and should be the one that gives us the most inferential power 
with respect to which model we should choose.

Standard Error (SE)
In the case of a regression model, we would probably measure the standard error of a 
given model. The objective we should have should be to have a standard error that is 
as close to 0 as possible. Highly negative or highly positive standard error values are 
generally undesirable.

Classification
Moving beyond the case of predicting specific values, our data observations often belong 
to some class that we would like to label them as such. We refer to this paradigm of 
problems as classification problems. To introduce readers to these types of problems, we 
begin by addressing the most elementary of these algorithms: logistic regression.

http://dx.doi.org/10.1007/978-1-4842-2734-3_2
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Logistic Regression
In addition to regression, one of the important tasks of machine learning is classification 
of an observation. Although there are multinomial classification algorithms, we will start 
by examining a binary classifier, a method often used as a baseline for the remainder of 
the classifiers. Logistic regression gets its name from the function that powers it, known as 
the logistic function, illustrated in Figure 3-11.

The function itself reads this this:

f x
e x( ) =

+






−

1

1

The intuition behind how we classify an observation is simple: we set a threshold for 
a given f(x) value and then classify it as a 1 if it meets or exceeds this threshold and a 0 if 
otherwise. In many contexts, the x variable will be replaced by a linear regression formula, 
in which we model the data. As such, the equation for f(x), or the log odds, will be

π β β=
+ − +( )

1

1 0 1e X

where π = log odds and π* is the given threshold. As for the threshold we establish, that 
depends on what we would like to maximize: accuracy, sensitivity, or specificity.

Figure 3-11. Visualization of logistic function
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•	 Sensitivity/recall: The ability of a binary classifier to detect true 
positives:

True Positive Rate
True Positives

Positives

True Positives

True P
= =

oositive False Negatives+

•	 Specificity: The ability of a binary classifier to detect true 
negatives:

Specificity
True Negative

Negatives

True Negatives

True Negativ
= =

ees False Positives+

•	 Accuracy: The ability of a binary classifier to accurately classify 
both positives and negatives:

Accuracy
True Positives True Negatives

Positives Negatives
=

+
+

In certain contexts, it may be more advantageous to magnify any of these statistics, 
but that’s all relative to where these algorithms are being applied. For example, if you 
were testing the probability of a phone battery combusting, you would probably want to 
be certain that false negatives are minimized as much as possible. But if you were trying 
to detect the probability that someone is going to find a match on a dating website, you 
probably would want to maximize true positives. The relationship between the tradeoff of 
these predictive abilities is most easily exemplified using an ℝOC curve, which shows how 
altering the value of π* affects the classification statistics of the model.

ℝeceiver Operating Characteristic (ℝOC) Curve
The ℝOC curve initially was used during World War II for the purposes of radar detection, 
but its uses were soon considered for other fields, statistics being one of them. The ℝOC 
curve displays the ability of a binary classifier to accurately detect true positives and 
simultaneously check how inaccurate it is by displaying its false positive rate. This is 
shown in Figure 3-12.



Chapter 3 ■ a review of optimization and maChine Learning

68

In the context of logistic regression, the evaluation of any specific model, given a 
specific threshold for π, is ultimately determined by the area under the curve, or AUC. The 
vertex of the plot is the .50 AUC score, which indicates that the model, should its score be 
this, is no better at classifying than a random guess. Ideally, this AUC score would be as 
close to one, but we generally accept anything ≥ .70 as acceptable.

Confusion Matrix
Another method of evaluating classification models is the confusion matrix, a 
graphical representation of the classifiers predictions against the actual labels of a 
given observations. From this visualization, we derive the values for the statistics 
listed previously that ultimately help us accurately evaluate a classification model’s 
performance. Figure 3-13 shows a visual example of a confusion matrix.

Figure 3-12. Example ROC curve plot
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Interpreting the values within a confusion matrix often is a subjective task that is 
up to the reader to determine. In some instances, false positives, such as determining 
whether users should buy a product or not, will not be as detrimental to solving the 
problem at hand. In other cases, such as determining whether a car engine is faulty, 
false positives may actually be detrimental. ℝeaders should be conscious of the task they 
are performing and tune the model to limit the false positives and/or false negatives 
accordingly.

Limitations to Logistic ℝegression
Logistic regression can only predict discrete outcomes. It requires many of the 
assumptions necessary for ordinary linear regression, and overfitting of data can become 
quite common. In addition to this, classification with logistic regression works best 
when we have data that is clearly separable. For these reasons, in addition to the fact that 
there are more sophisticated techniques available, it is a common modeling practice to 
consider the logistic regression model to be the baseline by which we juxtapose other 
classification methods and observe the nuances.

Moving forward, we will look at a simple example using logistic regression. This 
data set will be referenced in later chapters, and in Chapter 10 in detail, for those who are 
curious about the process by which this model was produced.:

#Code Redacted, please check github!
#Logistic Regression Model
lr1  <- glm(data[,1] ~ data[,2] + data[,3] + data[,4] + data[,5] + data[,6] 
+ data[,7],
            family = binomial(link = "logit"), data = data)

#Building Random Threshold
y_h <- ifelse(lr1$fitted.values >= .40, 1, 0)

Figure 3-13. Confusion matrix

http://dx.doi.org/10.1007/978-1-4842-2734-3_10


Chapter 3 ■ a review of optimization and maChine Learning

70

#Construct ROC Curve
roc(response = data[,1], predictor = y_h, plot=TRUE, las=TRUE, 
     legacy.axes=TRUE, lwd=5,  

main="ROC for Speed Dating Analysis", cex.main=1.6, cex.axis=1.3,  
cex.lab=1.3)

The ℝOC curve for our model is shown in Figure 3-14.

Using the preceding code, we have an area under the curve of .7353. Given the 
threshold that we set before, this model’s performance would be considered acceptable, 
but it should likely undergo more tuning.

Support Vector Machine (SVM)
Among the more sophisticated machine learning models available, support vector 
machines are a binary classification method that has more flexibility than the logistic 
regression model in that they can perform non-linear classification. This is performed 
via its kernel functions, which are equations that orthogonally project the data onto a 
new feature space, and the classification of the objects are performed as a product of two 
hyperplanes constructed by a norm (See Chapter 2).

Figure 3-14. ROC curve for logistic regression example

http://dx.doi.org/10.1007/978-1-4842-2734-3_2
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In the case of liner SVMs, we take in as our inputs a response variable, Y, and an 
explanatory variable(s), x. We orthogonally project this data into feature space, such that 
we form the hyperplane that separates the data points. The size of these hyperplanes is 
determined by the Euclidean norm of the weights, or w, vector in addition to an upper 
bound and lower bound, respectively denoted as the following:

wx b+ =1

wx b+ = −1

We keep reiterating this process until we have reached a norm of w that maximizes 
the separation between the two classes. The separation of the classes is maximized by 
minimizing ||w||, being that the size of the hyperplane is given by the following:

2

w

The following constraints also prevent us from allowing observations to fall in 
between the two hyperplanes:

wx b+ ≥ =1 1, if y

wx b+ ≤ − = −1 1, if y

The observations that ultimately fall on the boundaries of the hyperplane are the 
most important, as they are the “support vectors” that define the separation between 
classifications. This transformation is shown in Figure 3-15.

Figure 3-15. Orthogonal transformation of data via kernel function
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The optimization problem formed from these constraints in addition to objective of 
the SVM is given by the following:

Minimize w subject to for i ny wx bi +( ) ≥ = …1 1, , ,

Types of Kernels
To expand the flexibility of SVMs, different kernels have been developed. Among them 
are the following:

•	 Polynomial

•	 Gaussian radial basis function

•	 Hyperbolic tangent

Sub-Gradient Method Applied to SVMs
A sub-gradient of a function is defined as a generalization of a derivative to a function that 
are not differentiable. Simply stated, it is the slope of a line that goes through the derivative 
of a function, but falls below the derivative. Modern modifications to the SVM algorithms 
have yielded better performing classification models when dealing with data with more 
than 10^5 features and 10^5 observations. We define the optimization problem as

f w b
n

y wx b w
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where f is a convex function of w and b. Moreover, this allows us to use gradient decent 
methods because they work particularly well on convex sets. Given a cost function C(w), 
defined as the actual classification minus the predicted classification, we use the gradient 
descent formula therefore as follows:
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The sub-gradient step size selection method is similar to the bold driver approach 
described earlier in this chapter. As always, the context in which an algorithm is being 
applied should ultimately decide which method is used, not just which performs better.
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Extensions of Support Vector Machines
A regression method proposed in 1996 by Vladimir Vapnik, Harris Druck, Christopher 
Burges, Linda Kaugman, and Alexander Smola is among the more popular extensions 
of SVMs. The difference is that in SVℝ, we don’t care about the observations that fall 
within the hyperplane. Instead, we only modify the shape of the hyperplane in response 
to points that fall outside the loss tolerance zone, with the objective of minimizing the 
amount of these points that fall out of this zone. The type of regression performed can be 
altered again by the same kernel functions listed earlier. In addition to this, an alternative 
to K-means clustering which uses the Gaussian kernel as the activation function for 
orthogonal projection. Here, the algorithm searches to make the hyperplane such that 
the smallest sphere that encloses the image of the data defines a given cluster. Clustering 
algorithms are covered later in this chapter. 

Limitations Associated with SVMs
The main problem with SVMs arises from what is arguably the key to why they are so 
powerful: kernel functions. Determining the proper kernel to use is often stated as the 
largest drawback to this technique. When delving deeper into this aspect of algorithm 
training, specifically the selection of the loss parameter and the Gaussian kernel’s width 
parameter is not apparently obvious and is highly subject to the context in which the 
algorithm is being used. Second, although SVMs do perform well on large data sets, they 
are a computationally expensive method and require sufficiently good hardware when 
applied in an industry setting. As such, it does not always make sense to use SVMs in 
contexts outside of research, or any context where real-time data would be analyzed.

The following is a quick example of SVMs used on the iris data set:

#Code Redacted, please check github!
require(LiblineaR)
require(e1071)

#SVM Classification
output  <- LiblineaR(data=s, target=y_train, type = 3, cost = heuristicC(s))

#Predicted Y Values
y_h <- predict(output, s, decisionValues = TRUE)$predictions

#Confusion Matrix
confusion_matrix <- table(y_h, y_train)
print(confusion_matrix)

When executing our code, it yields the confusion matrix shown in Figure 3-16.
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Machine Learning Methods: Unsupervised 
Learning
Moving beyond the paradigm in which we know the answers we’re trying to predict is 
the more ambiguous section of deep learning, in which we are trying to make inferences 
based off of our algorithms. This specific subset of problems is known as being a part 
of unsupervised learning, or problems where we don’t know a priori what the answers 
should be.

K-Means Clustering
Until now, we’ve spoken primarily about supervised learning, but another important 
aspect of machine learning is the use of algorithms in unsupervised learning cases. 
Typically, unsupervised learning can be performed as an exploratory research method, or 
as a preliminary step prior to the primary component of the experiment. One of the best 
examples of unsupervised learning is the K-means clustering algorithm. The motivation 
behind this algorithm is to find observations that are similar based on the distance they 
are away a cluster center.

Assignment Step
Here, we take the observations of data and give an initial set of k means by calculating 
the means of three random observations within the data. From this point, we assign each 
observation to the cluster centers based on which assignment yields the smallest within 
cluster sum of squares, determined by the Euclidean norm between the observation’s 
mean and the cluster center mean

S x x m x m j j ki
t

p p i
t

p j
t= − ≤ − ∀ ≤ ≤{ }: ,

2 2
1

where S = cluster center and x
p
 is an observations mean.

Figure 3-16. Confusion matrix for support vector machine
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Update Step
We then recalculate the cluster mean by taking the mean of the observations within the 
center and then reiterate over these two steps until reassignments stop:

m
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t

i
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x S
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j i
t
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=1 1 ∑

Limitations of K-Means Clustering
The major problem with K-means clustering is that the solution reached is often 
dependent on where the means are initialized, and therefore convergence upon a global 
minimum isn’t guaranteed. Also, depending on the variation of K-means chosen, the time 
taken until convergence may also not be particularly fast.

Here’s a brief example of K-means clustering:

#Upload data
data  <- read.table("http://statweb.stanford.edu/~tibs/ElemStatLearn/
datasets/nci.data", sep ="", header = FALSE)
data <- t(data)
k_means  <- c()
k  <-  seq(2, 10, 1)
for (i in k){
  k_means[i]  <- kmeans(data, i, iter.max = 100, nstart = i)$tot.withinss
}

clus <- kmeans(data, 10)$cluster
summ  <- table(clus)
#Removing NA Values
k_means  <- k_means[!is.na(k_means)]
#Plotting Sum of Squares over K
plot(k, k_means,  main ="Sum of Squares Over K-Clusters", xlab = "K 
Clusters", ylab= "Sum of Squares",
     type = "b", col = "red")

Typically when performing K-means clustering, the most difficult part is determining 
which value of k we should pick. Typically, the more clusters one has, the lower the 
sum of squares within a cluster between its observations and the cluster centers will 
be. However, the more clusters that are present, the less informative these clusters are. 
Therefore, the challenge becomes a tradeoff between sum of squares over the K clusters 
and as least clusters as possible to make the observations reasonably differentiable. 
Figure 3-17 shows a plot that aids us in that effort.
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In the plot in Figure 3-17, we notice that our sum of square decreases dramatically in 
the beginning, but we see that a tapering off toward the end in the value changes. As such, 
it’s reasonable for us to choose a value between 6 and 8, preferably closer to, if not, 6. This 
follows the objectives laid out in the prior paragraph and would yield us with actionable 
insights, or create a feature for a data sight that contains significant differences for a 
classification or regression algorithm to detect.

Expectation Maximization (EM) Algorithm
Popular within the paradigm of unsupervised learning, EM algorithms can be used for 
a multitude of purposes such as classification or regression. Most specifically of use to 
the user, it can be used to impute values that are missing within a data set. We will show 
this capability in Chapter 11. ℝegardless, the EM algorithm is a probabilistic model, 
which distinguishes it from many machine learning models, which often tend to be 
deterministic. The algorithm uses the log-likelihood function to estimate the parameter 
and then maximizes the expected log-likelihood found.

Figure 3-17. Within cluster sum of squares over K clusters

http://dx.doi.org/10.1007/978-1-4842-2734-3_11


Chapter 3 ■ a review of optimization and maChine Learning

77

Expectation Step
Consider a set of unknown values Z, which is a subset of the data set X. We calculate the 
log-likelihood of a parameter with regard to the conditional distribution of Z given X. The 
following equation yields the expected value of the maximum likelihood estimate of the 
parameter:

L X p X p X Zzθ θ θ;( ) = ( ) = ( )| , |∑

Q E L X Zt

Z X tθ θ θ
θ

| log ; ,
| ,( ) = ( ) ( )

Maximization Step
In this step, we seek to maximize the probability of the given parameter we are analyzing. 
The equation is given by the following:

θ θ θ
θ

t tQ+ = ( )1 argmax |

Limitations to Expectation Maximization Algorithm
The EM algorithm also tends to be very slow to converge and doesn’t yield the asymptotic 
variance-covariance matrix of the MLE. In addition to this—similar to the same limitation 
with naïve Bayes classifiers, because the MLE estimator assumes feature independence—
it would be ill advised to use this method if the features being analyzed are in fact not 
independent. The following is an example of the EM algorithm used for classification via 
clustering:

#Expectation-Maximization Algorithm for Clustering
require(MASS)
require(mclust)
y_h <- Mclust(x_train, G = 3)$classification
print(table(y_h, y_train))
plot(Mclust(x_train, G = 3), what = c("classification"), dimens=c(1,3))

When executing our code, it yields the plot shown in Figure 3-18.
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Decision Tree Learning
Commonly used across a variety of fields for the purpose of data mining, decision trees 
yield a relatively simple method of uncovering insights hidden below the surface of data. 
There are broadly two types of decision tress, and they typically are used for regression 
and classification. Decision trees are constructed by creating a rule that determines 
which direction the decision flows. The idea is that you use a funnel methodology in 
which the first rule is the broadest and you break down the questions into subsets until 
the final “leaf” is the most granular aspect determined.

The benefits often associated with decision trees is that overall, they are relatively 
easy to understand and generally quite effective. In addition, decision trees can handle 
missing data better than some machine algorithms can without replacing or changing 
the data (we can just average the values or classifications), and they are quick to compute 
final values relative to other modeling techniques. Above all, there are varieties of 
methods that can be used to help the trees learn effectively, and they can model data well 
when traditional regression methods cannot.

Figure 3-18. Iris data clusters from EM algorithm clustering
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Classification Trees
Classification trees are similar to regression trees. The splits are usually determined by 
binary variables, but they can be both numerical and categorical. In addition to this, 
classification trees can make two types of predictions: 1) point prediction, which simply 
denotes the class, and 2) distributional prediction, which gives a probability for each 
class. For probability forecasts, each terminal node in the tree yields a distribution over 
the classes. If the leaf corresponds to the sequence of answers, given by A = a, B = b, …  
Q = q, then the following equation yields the probability:

Pr | , , ,Y y A a B b Q q= = = … =( )

To evaluate the classification tree, the same methods of evaluating different classification 
models as described earlier are used. But we also introduce the concept of average loss. 
Simply stated, some errors are likely to cause greater “damage” toward accurately reaching the 
correct classification. The average loss formula is given by the following:

Loss Y j X x= =( ) = = =( )| Pr |∑ i ijL Y i X x

Moving beyond this, we can determine whether the model made an incorrect 
classification in cases where it was or was not uncertain using the normalized negative 
log-likelihood. The formula for it is given by

L data Q
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where Q(Y = y|X = x) is the conditional probability the model predicts. In this context, L 
is also referred to as cross-entropy. If perfect classification were possible, L would be 0. 
If there is some irreducible uncertainty in the classification, the best possible classifier 
would give L = H[Y|X] , the conditional entropy of Y given X. Less than ideal predictors 
have L > H[Y|X]. Here is an example of a classification tree:

require(rpart)
#Classification Tree
classification_tree <- rpart(y_train ~ x_train[,1] + x_train[,2] + x_
train[,3] + x_train[,4]
                             +x_train[,5] + x_train[,6], method = "class")
pruned_tree <- prune(classification_tree, cp = .01)

#Data Plot
plot(pruned_tree, uniform = TRUE, branch  = .7, margin = .1, cex = .08)
text(pruned_tree, all = TRUE, use.n = TRUE)

When executing our code, we yield the plot shown in Figure 3-19.
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The confusion matrix accompanying this model is shown in Figure 3-20.

ℝegression Trees
The primary goal in this model is to maximize the probability of landing up at a given leaf 
as a product of the variables being analyzed. We seek to maximize the information we get 
about the response variable upon each split we approach. This is modeled by

I C Y:[ ]

where I is information, C is the variable that determines the leaf we move toward, and Y is 
the response variable

I Y A A a I Y A a;[ ]= =( ) =[ ]∑ a Pr ;

where,

I Y A a H Y H Y A a; |=[ ]= [ ]− =[ ]

Figure 3-19. Classification tree splits based on Classification tree model fitted above

Figure 3-20. Confusion matrix for classification tree
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where

H X E I X E P X( ) = ( )  = − ( )( ) ln

ℝegardless of whether we are looking at continuous or discrete variables, we 
calculate the sum of squares the same way

S y m
x leaves T i c

i c= −( )
∈ ( ) ∈
Σ Σ 2

where m
n

y i cc
c

i= ∈
1
∑ , ,  the prediction for leaf c.

Uncertainty in prediction using regression trees, similar to the uncertainty seen 
in classification trees, is an issue worth considering when employing these models. 
Primarily, these uncertainties are imprecise estimates of the conditional probabilities. 
The tree is also actively changing as the response values shift. We would ideally like a 
measure of how different the tree could have been if we drew a different sample from the 
same distribution. This can be estimated using non-parametric bootstrapping. Assuming 
data (x

1
, y

1
), (x

2
, y

2
), …, (x

n
, y

n
), we draw a random set of integers J

1
, J

2
, …, J

n
, independently 

and uniformly from the numbers 1:n, with replacement. Then we set

′ ′( ) = ( )X Y x yi i J Ji i
, ,

where we treat this bootstrapped sample just like the original data and fit a tree to it. 
ℝepeated over many iterations, we get a bootstrap sampling distribution of trees. This 
approximates the actual sampling distribution of regression trees. The spread of the 
prediction of our bootstrapped trees around the original indicates the distribution.

Limitations of Decision Trees
Typically, the most difficult parts of building a decision tree are choosing the rule that 
creates the best decision tree and choosing a tree size that isn’t overly complex, which 
leads to overfitting in the training set, or one that doesn’t yield any actionable insights at 
all. To make things worse, it’s difficult to tell when exactly overfitting occurs just from the 
training error alone. To mitigate these problems, it is generally encouraged that decision 
trees have a sufficient training example size. Ideally, the model fits to the data reasonably 
well, and the rules employed to determine splits in direction should not be overly 
complex. The stopping criterion ultimately controls when we reach a leaf. Examples of 
often-used rules are to stop when the information yielded decreases below a certain user-
determined threshold or when the “child” of the “parent” node yields a sufficiently small 
enough set of data points. Moving forward from this however, decision trees are relatively 
simple models that don’t always perform very well on complex data with respect to 
regression problems, and also don’t perform well on categorical data where there are 
multiple levels for each category.
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Ensemble Methods and Other Heuristics
For instances in which standard machine learning algorithms fail, a significant boost in 
accuracy can be achieved from algorithms that are in actuality combinations of multiple 
algorithms. We refer to these as ensemble methods.

Gradient Boosting
Originally developed by Leo Breiman, gradient boosting is a technique used on regression 
and classification problems for the purposes of producing a superior model from weaker 
models. It builds the model iteratively, and the optimization problem is to minimize the 
gradient of this function. Let’s take a model F, which we expect to predict a value y

h
, with 

the objective of minimizing the squared error. Let M be the number of boosting iterations 
we want to go under, where 1 ≤ m ≤ M. We assume that at the outset of our experiment we 
will have a model F

m
, which we seek to improve. Therefore:

F x F x h x y
m m( ) = ( ) + ( ) =+1

h x y F x
m( ) = − ( )

Gradient boosting seeks to make Fm+1  more correct than the previous model. Other 

loss functions that have been proposed are the squared error loss function given by

h x
n

h y
x

i i( ) = −( )1

2

2
∑ θ

where

∇ ( ) = −( )h x
n

h y
x

i1
∑ θ

where n = the number of observations within data set X.

Gradient Boosting Algorithm
 1. Define the optimization problem as

F E L y F x
F

x y
*

,argmin [ ,= ( )( )

where L(y, F(x)) is some differentiation loss function, such as 
the gradient of the squared loss as shown earlier.
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 2. Calculate the residuals as given by the following equation for 
m = 1, …, M:

r
L y F x

F xim
i i

i F x F x
m

= −
∂ ( )( )

∂ ( )










 ( )= ( ) −

,

1

 3. Use the initial model with a training set to iteratively improve 
the performance.

 4. Calculate γ
m

 via the following equation:

γ γ
γm i i m m ii

n L y F x h xargmin ,∑ ( ) + ( )( )−1

 5. ℝepeat 2–4 until convergence.

ℝandom Forest
The final ensemble method I will address in this chapter is that of the random forest. 
Simply stated, random forests are combinations of several decision trees, such that each 
decision tree can be considered unique from the others with respect to the features it 
evaluates at a given branch. Although the length of these trees is homogenous, each tree’s 
decision is independent from one another. The value we choose for a given observation 
typically is the average value with respect to all the trees in the case of regression, or it’s the 
average (or most prevalent) observation with respect to all of the trees in classification.

Limitations to ℝandom Forests
ℝandom forests’ main limitations is the fact they, similar to the trees they are made of, 
have a tendency to overfitting. The same techniques I recommended for use on decision 
trees, such as pruning and preemptively limiting growth, should be used here to limit the 
probability of a tree overfitting.

Bayesian Learning
Built off of Bayes’ theorem, and ultimately employed in many machine learning and 
natural language processing models, Bayesian learning uses representations of random 
variables and their conditional dependencies via a directed graph. Bayesian learning 
is used in situations such as determining the sentiment of a word given the context it is 
within, and finding the probability of a name being that of a female or a male based on 
the genders it typically is prescribed to within a test set.
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Naïve Bayes Classifier
A simple application of Bayes’ theorem is to the case of classification. Naïve Bayes 
classifier uses conditional probability to determine the likelihood of an event. Let’s say we 
have a vector z z z z= …[ ]1 1 3, , ,  and we want to determine the probability of event A. We 

would model this equation as

P A z
P z A P A

P z
|

|( ) = ( ) ( )
( )

where P(A|Z) is defined as the posterior probability, P(z|A) is the prior probability, P(A) 
is the likelihood, and P(z) is the probability of the instance occurring (this can almost 
always be ignored). Now we want to use this formula to properly be able to classify 
observations. To this, we turn this into an optimization problem, given by the following 
equation:

ˆ arg max |
, ,

y P A P z A
k K

k i k= ( ) ( )
∈ …{ } ∏
1

We assign a value to y based on the value that maximizes the probability of some 
event A. Although this isn’t the only way to use a naïve Bayes classifier, it’s an example of 
one of the more common ways Bayes’ theorem is applied for the purpose of classification.

Limitations Associated with Bayesian Classifiers
Bayesian classifiers’ biggest limitation lies mostly the fact that it assumes the independent 
nature of features, which won’t always be the case in many contexts in which we’re 
analyzing data. Once it’s established that feature independency doesn’t exist, we can’t use 
this classifier at all:

#Bayesian Classifier
require(e1071)

#Fitting Model
bayes_classifier <- naiveBayes(y = y_train, x = x_train , data = x_train)
y_h <- predict(bayes_classifier, x_train, type = c("class"))

#Evaluating Model
confusion_matrix <- table(y_h, y_train)
print(confusion_matrix)

When executing the preceding code, the confusion matrix shown in Figure 3-21 is 
yielded.
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Final Comments on Tuning Machine Learning 
Algorithms
One of the more difficult parts of practicing machine learning algorithms that I’ve not 
addressed yet is the concept of parameter tuning. The amount of parameters one can tune 
depends on which algorithm is being employed, but nonetheless this is a challenge that 
is noted across the entire discipline. We have discussed why it’s important to ensure that 
overfitting doesn’t occur so we achieve as robust a solution as possible. Generally speaking, 
robustness is reflected by stability of prediction power from one data set to the next, and 
overfitting is reflected by stark drop-offs in predictive power from on data set to the next. I’ll 
now discuss how to achieve this robustness via methods in the following sections.

50/25/25 Cross-Validation
Users should use a validation set to do the parameter tuning against, which should be 50% 
of the size of the total data set. Then the users should create two training sets: one will be 
used to train their tuned algorithm, and the other to test the degree of robustness/check for 
overfitting. Other percentage splits can be examined to see the difference in performance.

Tune One Parameter at a Time
Should the reader be using the packages and not a custom implementation of an 
algorithm, there will likely be parameters that are set to default values. Trying to change 
more than one parameter at a time is difficult not only for the sake of the results of the 
algorithm being yielded in a timely fashion, but also due to the fact that it’s hard to 
separate the contribution of specific parameters from the degree of change in the output. 
For example, random forests get a great deal of their power from the largeness of the 
individual trees as well as from the amount of trees allowed to have within a given model. 
Augmenting both of these at the same time distorts the ability to which we can properly 
tune the algorithm as a whole and ultimately can lead to under or overfitting.

Figure 3-21. Confusion matrix for Bayesian classifier example
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Using Search Algorithms to Tune Machine Learning Parameters
ℝeaders who want to take a more advanced approach are advised to pay close attention 
in Chapter 8 where we discuss in depth search algorithms that can be used to choose 
machine learning algorithms. Although still a developing area of research, there has been 
significant success achieved with using GridSearch and other local search algorithms 
to choose better algorithms by lowering an error statistic of a regression algorithm or 
increasing an AUC score yielded by a classification algorithm.

Reinforcement Learning
ℝeinforcement learning differs from supervised learning in that the labels we are fitting 
against in supervised learning problems are never given. Instead, there is a focus on 
finding the proper balance between leveraging existing knowledge in the model and 
knowledge that we want the model to find from the environment which is not already 
known. Integral to the field of reinforcement learning is this subtopic of probability 
theory. In these type of problems, we assume there is a gambler near a group of slot 
machines who has to decide which machines to play, how many times to play each 
machine, and in which order to play the machines. When played, each machine provides 
a random reward from a probability distribution specific to a given machine. The 
objective is to maximize the amount of money that the gambler will have taken from 
this period of gambling. Moving forward, we can generally describe the reinforcement 
learning problem as one that requires an intelligent exploration of an environment, in 
reference to the same objectives described in the multi-armed gambler approach.

Distinguishing reinforcement learning from supervised and unsupervised methods 
is the fact that the actions we take significantly affect the subsequent information we get, 
hence the emphasis on making the best possible decision upon each iteration of a given 
algorithm. The basic algorithm is described as following:

•	 Agent

1. Execute a given action

2. Observe a certain outcome

3. ℝeceive a reward, usually modeled in the form of a scalar

•	 Environment

1. ℝeceives action performed by the agent

2. Outputs an observation as well as a scalar reward

http://dx.doi.org/10.1007/978-1-4842-2734-3_8
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We define history as the sequences of observations, rewards, and actions that occur with 
respect to an agent and a given environment, denoted as H O R A O R At t t t= … − − −1 1 1 1 1 1, , , , , , . All 
subsequent observations, rewards, and actions are influenced by the history as it exists in a 
given experiment. This is what we define as the state, denoted as S f Ht t= ( ) . The state of 
the environment is not visible to the agent, so it doesn’t allow a bias for the actions an agent 
may pick. In contrast, the state of the agent is internal. The information also has a state, 
which is described as a Markov process. It should be noted that because this is an 
introductory book to deep learning, the application of reinforcement learning won’t be as in 
depth as it would be in more advanced books. That said, it is my hope that from reading this 
book, those who currently find reinforcement learning problems inaccessible will be able to 
tackle these problems upon attainment of a solid understanding of the concepts addressed 
during the course of this text.

Summary
We now have reached the end of our review of the necessary components of optimization 
and machine learning. This chapter, as well as the prior chapter, should be used as a 
reference point for understanding some of the more complex algorithms we shall discuss 
in the chapters moving forward. Now, we’ll progress into discussing the simplest model 
within the paradigm of deep learning: single layer perceptrons.
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CHAPTER 4

Single and Multilayer 
Perceptron Models

With enough background now under our belt, it’s time to begin our discussion of neural 
networks. We’ll begin by looking at two of the commonest and simplest neural networks, 
whose use cases revolve around classification and regression.

Single Layer Perceptron (SLP) Model
The simplest of the neural network models, SLP, was designed by researchers McCulloch 
and Pitts. In the eyes of many machine learning scientists, SLP is viewed as the beginning 
of artificial intelligence and provided inspiration in developing other neural network 
models and machine learning models. The SLP architecture is such that a single neuron is 
connected by many synapses, each of which contains a weight (illustrated in Figure 4-1).

Figure 4-1. Visualization of single perceptron model
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The weights affect the output of the neuron, which in the example model will be a 
classification problem. The aggregate values of the weights multiplied by the input are 
then summed within the neuron and then fed into an activation function, the standard 
function being the logistic function:

Let the vector of inputs x x x xn

T= ¼[ ]1 2, , ,  and the vector of weights w w w wn= ¼[ ]1 2, , , .

The output of the function is given by

y f x wT= ( ),

where the activation function, when using a logistic function, is the following:

f x
e x( ) =

+ -

1

1

Training the Perceptron Model
We begin the training process by initializing all the weights with values sampled 
randomly from a normal distribution. We can use a gradient descent method to train 
the model, with the objective being to minimize the error function. We describe the 
perceptron model as

ŷ f x w x wT
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where π* = the threshold for log odds as described for logistic regression in Chapter 3.

Widrow-Hoff (WH) Algorithm
Developed by Bernard Widrow and Macron Hoff in the late 1950s, this algorithm is used 
to train SLP models. Though similar to the gradient method used to train neural networks 
(mentioned earlier), the WH algorithm uses what is called an instantaneous algorithm, 
given by
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http://dx.doi.org/10.1007/978-1-4842-2734-3_3
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We can therefore summarize the preceding equations into the following:

w k w k x x ki i i+( ) = ( )+ ( ) ( )1 hd

In this manner, we have the same optimization problem that we would in any 
traditional gradient method. Our goal is to minimize the error of the model by adjusting 
the weights applied to the inputs of data via gradient descent. With a classification 
problem in mind, let’s use logistic regression as our baseline indicator while also 
comparing it to a fixed rate perceptron indicator and the bold driver adaptive gradient 
using the WH algorithm.

Limitations of Single Perceptron Models
The main limitation of the SLP models that led to the development of subsequent neural 
network models is that perceptron models are only accurate when working with data that 
is clearly linearly separable. This obviously becomes difficult in situations with much 
more dense and complex data, and effectively eliminates this technique’s usefulness from 
classification problems that we would encounter in a practical context. An example of this 
is the XOR problem. Imagine that we have two inputs, x

1
 and x

2
 for which a response, y, is 

given, such that the following is true:

x1 x2y

0 0 0

1 0 1

0 1 1

1 1 0
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From the following example, we can see that the response variable is equal to 1 when 
either of the explanatory variables is equal to 1, but is equal to 0 when both explanatory 
variables are equal to each other. This situation is illustrated by Figure 4-2.

Figure 4-2. XOR problem

Let’s now take a look at an example using SLP with data that is not rigidly linearly 
separable to get an understanding of how this model performs. For this example, I’ve 
created a simple example function of a single layer perceptron model. For the error 
function, I used 1 minus the AUC score, as this would give us a numerical quantity such 
that we could train the weight matrix via back-propagation using gradient descent. 
Readers may feel free to use the next function as well as change the parameters.

We begin by setting some of the same parameters that we did with respect to our 
linear regression algorithm performed via gradient descent. (Review Chapter 3 if you 
need to review the specifics of gradient descent and how it’s applied for parameter 
updating.) The only difference here is that we’re using a different error function than the 
mean squared error used in regression:

singleLayerPerceptron <- function(x = x_train, y = y_train, max_iter = 1000, tol = .001){
#Initializing weights and other parameters
  weights <- matrix(rnorm(ncol(x_train)))
  x <- as.matrix(x_train)
  cost <- 0
  iter <- 1
  converged <- FALSE

http://dx.doi.org/10.1007/978-1-4842-2734-3_3
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Here, we define a function for a single layer perceptron, setting parameters similar 
to that of the linear regression via the gradient decent algorithm defined in Chapter 3. As 
always, we cross-validate (this section of code redacted, please check GitHub) our data 
upon each iteration to prevent the weights from overfitting. In the following code, we 
define the algorithm for the SLP described in the preceding section:

  while(converged == FALSE){
        #Our Log Odds Threshold here is the Average Log Odds
      weighted_sum <- 1/(1 + exp(-(x%*%weights)))
      y_h <- ifelse(weighted_sum <= mean(weighted_sum), 1, 0)
      error <- 1 - roc(as.factor(y_h), y_train)$auc
}

Finally, we train our algorithm using gradient descent with the error defined as 1 – AUC. 
In the following code, we define the processes that we repeat until we converge upon an 
optimal solution or the maximum number of iterations allowed:

#Weight Updates using Gradient Descent
#Error Statistic := 1 - AUC
if (abs(cost - error) > tol | iter < max_iter){
        cost <- error
        iter <-  iter + 1
        gradient <- matrix(ncol = ncol(weights), nrow = nrow(weights))
        for(i in 1:nrow(gradient)){
          gradient[i,1] <- (1/length(y_h))*(0.01*error)*(weights[i,1])
        }
(Next section redacted, please check github!)

As always, it’s useful for readers to evaluate the results of their experiment. Figure 4-3  
shows the AUC score summary statistics in addition to the last AUC score with its 
respective ROC curve plotted:

  #Performance Statistics
  cat("The AUC of the Trained Model is ", roc(as.factor(y_h), y_train)$auc)
  cat("\nTotal number of iterations: ", iter)
  curve <- roc(as.factor(y_h), y_train)
  plot(curve, main = "ROC Curve for Single Layer Perceptron")
}

http://dx.doi.org/10.1007/978-1-4842-2734-3_3
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Summary Statistics

       Mean    Std.Dev       Min       Max     Range
1 0.4994949 0.03061466 0.3973214 0.6205357 0.2232143

Note that the AUC scores are considerably poor, with the average rating being no 
better than guessing. Sometimes the algorithm here reaches slightly better results, but 
this would still likely be insufficient for purposes of deployment. This is likely due to the 
fact that the classes aren’t so clearly linearly separable, leading to misclassification with 
updates to the weight matrix upon each iteration.

Now that we’ve seen the limitations of the SLP, let’s move on to the successor to this 
model, the multi-layer perceptron, or MLP.

Multi-Layer Perceptron (MLP) Model
MLPs are distinguished from SLPs by the fact that there are hidden layers that affect the 
output of the model. This distinguishing factor also happens to be their strength, because 
it better allows them to handle XOR problems. Each neuron in this model receives an 
input from a neuron—or from the environment in the case of the input neuron. Each 
neuron is connected by a synapse, attached to which is a weight, similar to the SLP. Upon 
introducing one hidden layer, we can have the model represent a Boolean function, and 
introducing two layers allows the network to represent an arbitrary decision space.

Figure 4-3. ROC curve
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Once we move past the SLP models, one of the more difficult and less obvious 
questions becomes what the actual architecture of the MLP should be and how this 
affects model performance. This section discusses some of the concerns the reader 
should keep in mind.

Converging upon a Global Optimum
By the design of the model, MLP models are not linear, and hence finding an optimal 
solution isn’t nearly as simple as it would be in the case of an OLS regression. In MLP 
models, the standard algorithm used for training is the back-propagation algorithm, an 
extension of the earlier described Widrow-Hoff algorithm. It was first conceived in the 1980s 
by Rumelhart and McClelland and was seen as the first practical method for training MLP 
networks. It’s one of the original methods by which MLP models were trained by using 
gradient descent. Let E be the error function for the multi-layer network, where

E k h k y k
i

M

i
i

( ) = ( ) - ( )( )
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We represent the weighted sum value of the individual neurons that is inputted into 
the hidden layer by the following:
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Similarly, we represent the output from the hidden layer to the output layer as the 
following:
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With the weights represented by the following:
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Back-propagation Algorithm for MLP Models:
 1. Initialize all weights via sampling from normal distribution.

 2. Input data and proceed to pass data through hidden layers to 
output layers.

 3. Calculate the gradient and update weights accordingly.

 4. Repeat steps 2 and 3 until algorithm converges upon tolerable 
loss threshold or maximum iterations have been reached.
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After having reviewed this model conceptually, let’s look at a toy example. Readers 
interested in applications of multi-layer perceptrons to practical example problems 
should pay particular attention to Chapter 10. In the following section of code, we 
generate new data and display it in the following plot (illustrated in Figure 4-4):

#Generating New Data
x <- as.matrix(seq(-10, 10, length = 100))
y <- logistic(x) + rnorm(100, sd = 0.2)

#Plotting Data
plot(x, y)
lines(x, logistic(x), lwd = 10, col = "gray")

Figure 4-4. Plotting generated data sequence

Essentially, we have a logistic function around which the data is distributed such 
that there is variance around this logistic function. We then define the variable that holds 
the weights of the MLP model. I’m using the packaged monmlp, but users may also feel 
free to experiment with other implementations in packages such as RSNSS and h2o. 
Chapter 10 covers h2o briefly in the context of accessing deep learning models from the 
framework:

#Loading Required Packages
require(ggplot2)
require(lattice)
require(nnet)
require(pROC)
require(ROCR)
require(monmlp)

http://dx.doi.org/10.1007/978-1-4842-2734-3_10
http://dx.doi.org/10.1007/978-1-4842-2734-3_10
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#Fitting Model
mlpModel <- monmlp.fit(x = x, y = y, hidden1 = 3, monotone = 1,
                    n.ensemble = 15, bag = TRUE)
mlpModel <- monmlp.predict(x = x, weights = mlpModel)

#Plotting predicted value over actual values
for(i in 1:15){
  lines(x, attr(mlpModel, "ensemble")[[i]], col = "red")
}

When plotting the predictions of the MLP model, we see the results shown in 
Figure 4-5.

Figure 4-5. Predicted lines laying over function representing data

As you can see, there are instances in which the model captures some noise, 
evidenced by any deviations from the shape of the logistic function. But all the lines 
produced are overall a good generalization of the logistic function that underlies the 
pattern of the data. This is an easy display of the MLP model’s ability to handle non-linear 
functions. Although a toy example, this concept holds true in practical examples.

Limitations and Considerations for MLP Models
It is often a problem when using a back-propagation algorithm, where the error is a function 
of the weights, that convergence upon a global optimum can be difficult to accomplish. 
As briefly alluded to before, when we are trying to optimize non-linear functions, many 
local minima obscure the global minimum. We can therefore be tricked into thinking 
we’ve found a model which can effectively solve the problem when in fact we’ve chosen a 
solution that doesn’t effectively reach the global minimum (see Figure 4-6).
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To alleviate this, the conjugate gradient algorithm is applied. Conjugate gradient 
algorithms differ from the traditional gradient descent method in that the learning rate 
is adjusted upon each iteration. Many types of conjugate gradient methods have been 
developed, but all of them have the same motivation underlying them. In the context of 
the MLP network, we’re trying to find the weights that minimize the error function. To do 
this, we move in the direction of steepest descent, but we change the step size in such a 
way that it minimizes any possible “missteps” in searching for the global optimum. Let’s 
take a simple example, where we’re trying to solve

Ax b=

where x is an unknown vector, or weights vector in the context of the MLP network, A 
is the matrix of explanatory variables, and b is the response variable. Now look at the 
quadratic function

f x x Ax b cT T( ) = - +
1

2

where c is a constant scalar. When considering an example where A is positive-definite, 
the optimal solution for minimizing f (x) is the solution to Ax b= .  When calculating the 
gradient, we find that ¢( ) = -f x Ax b,  meaning that the direction of steepest descent 
would be equal to b Ax- . Therefore, we want to adjust the weight vector, x, with the 
following equation:

x x b Axk k= - -( )-1 h

Figure 4-6. Error over weight plot
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The operative part of this method is the transformation of the learning rate, η. By 
definition, η minimizes the function when the directional derivative of the function with 
respect to the learning rate is equal to zero. According to the chain rule:

df x

d
f x AE

T( )
= ( ) -( )¢

h
, E = y − ŷ

Finally, we determine the learning rate to therefore be the following:

Let b – Ax = 𝓇

𝓇
k

T 𝓇
k-1

 = 0,

(b – Ax
k
)T 𝓇

k–1
 = 0,

(b – A(x
k–1

 + h 𝓇
k–1

))T 𝓇
k–1

 = 0,

(b – Ax
k–1

)T 𝓇
k–1

 – h (A𝓇
k–1

))T 𝓇
k–1

 = 0,

(b – Ax
k–1

)T 𝓇
k–1

 = h 𝓇 k
T
-1 (A𝓇

k–1
)

𝓇
k

T𝓇
k–1

 = h 𝓇 k
T
-1 (A𝓇

k–1
),

How Many Hidden Layers to Use and How Many 
Neurons Are in It
We typically choose to use hidden layers only in the event that data is not linearly 
separable. Whenever step, heaveside, or threshold activation functions are utilized, it is 
generally advisable to use two hidden layers. With respect to using more than one 
hidden layer, it’s largely unnecessary because the increase in performance from using 
two or more layers is negligible in most situations. In situations where this may not be 
the case, experimentation by observing the RMSE, or another statistical indicator, over 
the number of hidden layers should be used as a method of deciding. Often, when 
adding a layer to a neural network model, this will be simple as editing an argument in 
a function or, in the case of some deep learning frameworks such as mxnet (featured in 
later chapters), passing values from a previous layer through an entirely new function. 
With respect to how many neurons should be within a given hidden layer, this must be 
tested for with the objective of minimizing the training error. Some suggest that it has to 
be between the input and output layer size, never more than twice the number of inputs, 
capturing .70-.90 variance of the initial data set—or to use the following formula:  

# # # *HiddenUnits inputs outputs= +( ) 2

3
.
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Briefly, let’s look at the difference between the conjugate gradient training method 
and traditional gradient descent using the RNSS package in R with the following code:

#Conjugate Gradient Trained NN
conGradMLP <- mlp(x = x, y = y,
size = (2/3)*nrow(x)*2,
                  maxit = 200,
                  learnFunc = "SCG")
#Predicted Values
y_h <- predict(conGradMLP, x)

We begin by defining the neural network using the mlp() function, in which we 
specifically denote the learnFunc argument as SCG (scaled conjugate gradient). We also 
choose the size parameter (the number of neurons in a neural network) using the 2/3 
rule mentioned earlier.

Now let’s compare the MSE of both the MLP model shown prior and this one we’ve 
just constructed:

MSE for Conjugate Gradient Descent Trained Model: 
0.03533956

MSE for Gradient Descent Trained Model: 0.03356279

Although only a slight difference in this instance, we can see that the conjugate 
gradient method yields a slightly inferior MSE value than the traditional gradient descent 
method in this instance. As such, it would be wise, given this trend of staying consistent, 
to pick the gradient descent trained method.

Summary
This chapter serves as an introduction into the world of neural networks. Moving 
forward, we will discuss models that have been developed for tasks that are generally 
beyond what SLP and MLP models are made for. Specifically, in Chapter 5, we will look 
at convolutional neural networks for image recognition as well as recurrent neural 
networks for time series prediction. Readers who don’t feel comfortable yet with the 
concepts discussed in this chapter are advised to review Chapters 2 though 4 again 
before advancing to Chapter 5, because many of the concepts referred to in Chapter 5 are 
addressed at length in those chapters.

http://dx.doi.org/10.1007/978-1-4842-2734-3_5
http://dx.doi.org/10.1007/978-1-4842-2734-3_2
http://dx.doi.org/10.1007/978-1-4842-2734-3_5
http://dx.doi.org/10.1007/978-1-4842-2734-3_5
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CHAPTER 5

Convolutional Neural 
Networks (CNNs)

Similar to the concepts covered in Chapter 4 with respect to the multi-layer perceptron 
problem, convolutional neural networks (CNNs) also feature multiple layers used to 
calculate the output given a data set. This model’s development can be traced back to the 
1950s, where researchers Hubel and Wiesel modeled the animal visual cortex. At length 
in a 1968 paper, they discussed their findings, which identified both simple cells and 
complex cells within the brains of the monkeys and cats they studied. The simple cells, 
they observed, had a maximized output with regard to straight edges that were observed. 
In contrast, the receptive field in complex cells was observed to be considerably 
larger, and their outputs were relatively unaffected by the positions of edges within the 
aforementioned receptive field. Beyond image recognition, for which CNNs originally 
gained and still retain their notoriety, CNNs have considerable other applications, such as 
within the fields of natural language processing and reinforcement learning.

Structure and Properties of CNNs
CNNs are, broadly speaking, multi-layer neural network models. In keeping with the 
structure of the animal visual cortex as described by Hubel and Weisel, the model can be 
visually interpreted as shown in Figure 5-1.

Figure 5-1. Broad visual display of a CNN

http://dx.doi.org/10.1007/978-1-4842-2734-3_4


Chapter 5 ■ Convolutional neural networks (Cnns)

102

Each block represents a different layer of the CNN, which I explain in greater detail 
later in this chapter. From left to right are the input, hidden (convolutional, pooling, and 
dropout layers), and fully connected layers. After the final layer, the model outputs a 
classification. Now consider Figure 5-2.

Fully connected layers enforce local connectivity between neurons and adjacent 
layers, as show in Figure 5-2. As such, the inputs of hidden layers are a subset of neurons 
from the layer preceding that hidden layer. This ensures that the learned subset neurons 
produce the best possible response. Also, the units share the same weight and bias in the 
feature/activation map, so that all the neurons in a given layer are analyzing/detecting 
the exact same feature.

As for features in the context of CNNs, I mean portions of an image that are distinct. 
This is what our filter compares the section of the image it is analyzing to, such that it can 
determine the degree to which the section of the image being scanned over is similar 
to the feature being analyzed. Assuming that we have enough training data and enough 
classes of images, these features are distinct enough that they help to distinguish one 
class from another.

Imagine we’re looking at two images, specifically an X and O, such as in Figure 5-3.

If we image both the X and the O as distinct images, to the human eye we can 
determine them as distinctly different letters. Among their distinguishing factors are that 
the center of the O is empty, whereas the center of the X features two intersecting lines. 
Examples of the feature maps of these values when visualized are shown in Figures 5-4 
and 5-5.

Figure 5-2. CNN architecture diagram

Figure 5-3. O and X example photo
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These values are often represented as an entry within a matrix with –1 and 1 for 
black and white respectively. When dealing with color images, each pixel is typically 
represented as an entry in a matrix with a value of 1 or 256 for black and white 
respectively. Depending on the language being used, though, zero indexing may affect 
the representation of RGB values such that the bounds shift backwards by 1.

Components of CNN Architectures
This section covers the components of CNN architectures.

Convolutional Layer
This layer is where the majority of the computation in any given CNN occurs and as such 
is the first layer after input that an image passes through. Within a convolutional layer, we 
have filters that scan over a portion of the image. Every filter is not particularly large with 
respect to height and width, but all of them extend through the entirety of the length of 
this layer.

Figure 5-4. Feature map of “X”

Figure 5-5. Feature map of “O”
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For example, imagine we’re trying to classify an image as either a 1 or a 0, and the 
image in actuality is a 1. And imagine that the image has a black background, but the digit 
is outlined in white pixels. Figure 5-6 shows an example of what this image can be said to 
look like.

The computer will distinguish the white pixels as having a value of 1 and the black 
pixels as having a value of –1. When we input this image through the convolutional layer, 
the model extracts the unique features of an image, which usually are the colors, shapes, 
and edges that ultimately define a specific image. Once we have the features of a given 
training image, we perform what is known as filtering over this inputted image. Filtering 
is the process of taking an image feature, which in this case we can imagine as a 3 x 3 pixel 
square, and matching it with a patch of that inputted image, which is also a 3 x 3 pixel 
square. In Figure 5-7, we can see what the process of filtering looks like.

We then multiply the number of the pixel of the feature by the corresponding number 
of the pixel of the image patch. In the example, we should gain an output of 1 or –1 for each 
operation. Intuitively, when the pixels match exactly, they should output to 1, and when 
they don’t, they should output to –1. At the end, we take the average of the pixel products. 
If an image matches exactly, the average should be 1. If it doesn’t, it will be considerable 
degrees lower than one. In this instance, imagine that the image patch and feature selected 
don’t match at all. As such, when we take the average, it should output to –1. We place 
this product in the center of the position of the image patch we are analyzing with a given 
feature on what is called a feature map. This ultimately will be the output of the convolution 
layer and will be used in the following layer. The convolutional layer will, over different 
iterations, produce multiple feature maps. The process of matching a feature with a given 
image patch over every possible position is known as convolving an image. We denote the 
feature/activation map for a given CNN as

Figure 5-6. Example image of “1”

Figure 5-7. Example of a filter
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h w x bi j
k k

i j k, ,
tanh= ( ) +( )

where wk is the weight, b
k
 is the bias, x is the value of the specific pixel, and tanh is for 

non-linearities in data. The subscripts i,j refer to the entry of the matrix that represents 
the feature/activation map. The weight, wk, is ultimately what connects the pixels in the 
feature maps to the preceding layer. The convolution layer, ultimately, is a stack of the 
feature maps that were yielded from the operation described earlier. We then put the 
feature maps into the pooling layer. We calculate the spatial size of the output volume as

Spatial Size
W F P

SOutput =
- +
+

2

1

where W = input volume size, F = size of receptive field of in convolution layer,  
P = amount of zero padding, and S = stride.

Pooling Layer
Between successive convolutional layers, it’s common to place what is called a pooling 
layer in between. Simply stated, the pooling layer takes the feature maps produced in 
the convolution layer and “pools” them into an image. The pooling layer effectively 
performs dimensionality reduction, hence the prior emphasis on spatial representation, 
thereby reducing the complexity of the model. This can be compared to the process of 
pruning in decision trees and similarly helps to prevent overfitting of a given model. In the 
prototypical CNN model, the pooling layer has a 2 x 2 filter, a stride of 2, and every depth 
slice in the input is downsampled such that we move by 2 pixels with respect to height and 
width. These operations in the pooling layer help to discard 75% of the feature/activation 
map. This layer uses a max operation, which in the aforementioned example would be 
taking a max over 4 numbers, or the 4 pixels in any given feature/activation map.

In keeping with the example described earlier, imagine that with a 2 x 2 filter, we’re 
looking at 9 x 9 feature map, where we’re analyzing the top lefthand corner with the 
following scores:

.88 0

0 .95

When using the max operation, we would choose .95, because it’s the maximum 
value within the 2 x 2 window. Because we have a stride of 2, we move 2 pixels to the 
right, which should mean that we’re looking at a 2 x 2 slice of the image where the top 
lefthand corner of the slice should be the third column of the feature map until we have 
a max pooled image, which is significantly reduced and therefore removes unnecessary 
complexities of the model. As a direct consequence of the max operation used in this 
layer, we needn’t be as precise as the prior layer when analyzing the image, and therefore 
this helps to make a more robust model that can more easily classify inputs. What I mean 
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by this specifically is that the values of the weights connecting each layer can be more 
generalized to all the training data that they have been exposed to, rather than overfitting 
in such a manner where the CNN wouldn’t perform well out of sample.

The function that determines the spatial size of the output is given by

Spatial Size W x H x LOutput = 2 2 2 ,

where

W
w F

s
H

H F

S
L L2

1
2

1
2 11 1

=
-
+

=
-
+

=, ,

Rectified Linear Units (ReLU) Layer
Rectifiers are used as another term for an activation function. Typically, we apply the 
following function to the inputs to this layer

f x x( ) = ( )max 0,

where x = input to a neuron.
When applied to the feature map, we can imagine that any of the values of the feature 

map that would be negative now are zero. Specifically, this helps outline the feature map 
closer to the image it’s most associated with. We do this to all of the feature maps to then 
get a “stack” of images.

Fully Connected (FC) Layer
Any neurons in this layer are connected to all the activation maps in the preceding layer. 
This layer is usually placed after a user-determined amount of convolutional, pooling, 
and ReLU layers. The images inputted to this layer will be significantly smaller than the 
original inputs due to the image reductions specified in the prior operations. In this layer, 
we scan the reduced images, which should correspond to each feature map, and turn 
each of the values given here into a list of values. This list then corresponds to one of the 
k images we put in. Following from the example used in the beginning of the chapter, 
we originally inputted a 1. After moving through all the layers, we take the average of 
the scores corresponding to this image, and then this is the probability of the image 
being a 1 or a 0. It should be noted that the only difference between this layer and the 
convolutional layer is the fact that the convolutional layers are only connected to a local 
region in the input and that many of the neurons in a convolutional layer volume share 
parameters. With this in mind, we can also convert between FC and convolutional layers 
when constructing a given architecture.
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Loss Layer
This layer is where we compare the predicted labels from the actual labels of the images. 
When trying to classify and object from k possible feature levels, we would use a softmax 
loss classifier. Using a Euclidean function is also common for the purpose of regressing 
against the labels of the specific images. Their functions are given by the following:

 I. Softmax loss function:
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When using the back-propagation algorithm, we make a confusion matrix comparing 
a 1 or a 0, where we subtract the label of the answer to the probability assigned. Following 
the example that we’ve been using, let’s say 1 = 1, and 0 = 0, but when we input a 1, 
we only receive a probability of .85 that it is a 0, and a probability of .45 that it is a 1. 
Therefore, we would have a cumulative error of –.60. We then adjust each feature maps 
pixel, through the weights displayed in the fully connected layer, using a gradient method 
as described before, with a designated learning rate. We initialize the weights at 0 and 
stop the CNN at the point at which the loss tolerance has been reached or the maximum 
iterations threshold has been reached. The same considerations for convergence upon an 
optimal solution as described in prior chapters must be taken into consideration.
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Tuning Parameters
Images sent to the input layer should be divisible by 2 more than once. Common image 
dimensions are 32 x 32, 64 x 62, and so on. Convolutional layers should have filters with 
dimensions of 3 x 3 or 5 x 5 at most, and zero-padding should be performed in such a 
way that it doesn’t alter the spatial dimensions of the input. For the pooling layers, their 
dimensions should be 2 x 2 with a stride of 2 most often. With these parameters, 75% of 
the activations will be discarded. Pooling layers that are larger than 3 result in too much 
loss in the classification process. When describing neurons and their arrangements, 
hyper-parameters are most relevant to this conversation. Specifically, I will be referring to 
stride, depth, and zero-padding. Among the most important parameters in CNNs, stride 
is a fixed parameter that determines the number of pixels that slide through a filter. For 
example, if the stride is 2, then 2 pixels at a time slide through the filters. Typically, stride 
is no greater than 2, and no less than 1. Zero-padding is the size of the zeroes around the 
border of the input volume. Through controlling zero-padding, we can more carefully 
control size of the activation maps, and other outputs, from layer to layer. Finally, depth 
refers to the number of filters we choose for a given experiment, each of which is what 
ultimately searches over each image in the convolutional layer.

Notable CNN Architectures
•	 LeNet: Developed in the 1990s by renowned deep learning 

researcher Yann LeCun, LeNet is a relatively simple architecture, 
all things considered. The purpose of this model was originally to 
classify digits, read zip codes, and perform general simple image 
classification. This is considered the analogue to a “Hello World” 
program that any developer first writes in a given language, 
because it’s considered to be the first successful CNN application 
to a practical task. As Figure 5-8 illustrates, the layers involved are 
as follows:

•	 input, conv layer, ReLU, pooling layer, conv layer, ReLU, 
pooling layer, fully connected, ReLu, fully connected, and 
softmax classifier.

Figure 5-8. Visualization of LeNet
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•	 GoogLeNet (Inception): This architecture won the ImageNet 
Large-Scale Visual Recognition Challenge (ILSVRC) competition 
in 2014 in homage to Yann LeCun’s LeNet. It was developed by 
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott 
Reed, Dragomir Anguelov, Dumitru Ehran, Cinven Vanhoucke, 
and Andrew Rabinovich. The name GoogLeNet is derived from 
the fact that a considerable number of the developers of the 
architecture work at Google Inc. In their paper “Going Deeper 
with Convolutions,” they describe an architecture that allows for 
“increasing the depth and width of the network while keeping the 
computational budget constraint.” As Figure 5-9 illustrates, the 
structure as proposed is as follows:

•	 Input, conv. layer, max pool, conv layer, pooling layer (with 
max function), inception (2 layers), max pool, inception, 
inception (5 layers), max pool, inception (2 layers), average 
pooling layer, dropout, ReLU, softmax classifier.

The focus of the inception architecture is that through 
the orientation in the layers as described earlier, the CNN 
model allows for “increasing the number of units at each 
stage” without doing so to the point where the model 
becomes too complex. Overall, the model seeks to process 
visual information at various scales and then aggregate the 
calculations to the next stage so higher levels of abstraction 
are analyzed simultaneously.

Figure 5-9. GoogLeNet architecture
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•	 AlexNet: Developed by Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, this won the ILSVRC in 2012. Similar in 
architecture to LeNet, AlexNet uses “non-saturating neurons” 
and efficiently implements the GPU for the convolution layers. 
The neurons in fully connected layers are connected to all 
neurons in the previous layer, response-normalization layers 
follow the first and second convolutional layers, and the kernel of 
layers two, four, and five are connected only to the kernel maps 
in the previous layer, which would be on the same GPU. The 
architecture is as follows (and shown in Figure 5-10):

•	 Convolutional (5 layers), fully connected (3 layers), [output is 
1000-way softmax classifier]

•	 VGGNet: This took second place to AlexNet in the ILSVRC 2014 
competition. VGGNet was developed by Karen Simonyan and 
Andrew Zisserman from the University of Oxford. The receptive  
field is 3 x 3, with 1 x 1 filters, stride is 2, and max pooling size is  
2 x 2. The architecture is such that the input is fed through several 
convolutional layers, to three fully connected layers (the first and 
second layers have 4096 channels, and the final is a softmax layer 
that performs 1000-way classification).

•	 ResNet: The first-place winner of ILSVRC 2015, ResNet features 
152 layers—far exceeding the amount of the previously mentioned 
networks. It was developed by Kaimin He, Xiangyu Zhang, 
Shaoqing Ren, and Jian Sun, all of whom are from Microsoft 
Research. The purpose of this architecture is to form a network 
that learns residual functions with references to the layer inputs, 
rather than a network learning unreferenced functions. The end 
result is a network that is considerably easier to learn, significantly 
easier to optimize, and that gains accuracy from increased depth, 
rather than one that loses accuracy from that depth.

Figure 5-10. AlexNet architecture
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Regularization
When multi-layer perceptrons have more than one layer, they are known to have the 
ability to approximate a given target, which then would lead to overfitting. To prevent 
overfitting, regularizing the input data is often recommended, however this is a slightly 
different process in the case of CNNs, we can use: 1) DropOut, which is taken from the 
inspiration of a phenomena observed within the human brain. This is where a given 
hidden layer has the probability of not being passed through with the probability we set 
as a hyperparameter. 2) Stochastic pooling, where the activation is picked randomly. 
Stochastic Pooling doesn’t require hyper-parameters and can be used as a heuristic, so to 
speak, with other regularization techniques. 3) DropConnect, which is a generalization 
of dropout, where each connection can be dropped with the probability of 1 – p. Each 
unit in this layer inputs data from random units in the preceding layer, which change 
upon every iteration. This helps ensure that the weights don’t overfit. 4) Weight Decay, 
which functions similarly to L1/L2 regularization, where we heavily penalize large weight 
vectors.

Of these methods, there has been a considerable amount of enthusiasm around 
using DropOut in CNNs, because it’s been shown to be an effective and powerful 
technique. Beyond preventing overfitting, DropOut has been observed to improve the 
computational efficiency of networks with large amounts of parameters, as this form of 
regularization causes a network to in effect become smaller during a given iteration. After 
all these iterations, the smaller networks’ performance can be averaged into a general 
prediction of what a complete network would have performed as. Secondly, it is observed 
that the DropOut layer introduces randomized performance in the network that allows 
noise within the data to be averaged over, such that its masking of signals within the data 
is diminished.

It’s not uncommon to use L1 regularization either, but be aware of the fact that the 
weight vectors in this instance can often shrink to 0—sometimes enough so that we 
can be left with a sparsely populated weight matrix. The negative effect of this type of 
regularization is that the inputs to certain layers that contain important information 
may become entirely unnoticed due to a “dead” connection between layers. In contrast, 
though, when you feel specifically that you want very explicit feature selection, L1 
regularization may yield significantly better performance.

L2 regularization is traditionally seen as the standard method by which 
regularization is performed in CNNs, because it tends to penalize abnormally large 
weights and favor those that are generally mild in their proportion relative to the entirety 
of the matrix. In contrast to L1 regularization, you get a considerably more populated 
weight matrix, which will cause the network to feed more data from a given layer to the 
next. As such, feature selection will be less stark than when using L1 regularization.

The final type of regularization you should know about would be an addendum 
to either L1 or L2 regularization via enforcing limits on a given weight’s norm size. As 
such, this would allow the parameter updates to have a hard limit and therefore limit 
the number of possible solutions a given network can yield. This would help to train the 
network faster via the limitation of possible solutions, and in the optimal solution prevent 
the parameters from updating too far in the incorrect direction.
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Summary
We have sufficiently covered the concepts of CNNs and walked through all the 
architectures that are most recent at this time. See Chapter 11 for an applied example of 
a CNN, specifically with respect to the preprocessing of image data—a highly important 
step in the constructing of image recognition software. Moving forward, we will discuss 
recurrent neural networks (RNs) and the intricacies of detecting patterns in time  
series–based data.

http://dx.doi.org/10.1007/978-1-4842-2734-3_11
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CHAPTER 6

Recurrent Neural Networks 
(RNNs)

Recurrent neural networks (RNNs) are models that were created to tackle problems 
within the scope of pattern recognition and are fundamentally built on the same concepts 
with respect to feed-forward MLPs. The difference is that although MLPs by definition 
have multiple layers, RNNs do not and instead have a directed cycle through which 
the inputs are transformed into outputs. I’ll begin the chapter by covering several RNN 
models and end it with a practical application of RNNs.

Fully Recurrent Networks
Imagine that we have an input, x, that we’re inputting into an RNN model, where we 
define the state as h, with the inputs being multiplied by a weight matrix, W. So far, 
everything is the same as it would be in previously described neural network models—
but as stated before, RNNs perform the same task on the inputs over time. Because of this, 
to calculate the current state of a neural network, we derive the following equation:

h f W x W h b where f ReLUt t R t= + +( ) =-1 , ,tanh

y f Wh b whereW weights h hidden layer b biast t t r t= +( ) = = =, , ,,

The key characteristic here is that when the neural network performs these 
operations, it “unfolds” into multiple new states, each of which is dependent on the prior 
states. Because these networks perform the same task for every input that’s put in, in 
addition to the functional dependency of the model, RNNs are often referred to as having 
memory. Figure 6-1 illustrates an RNN.
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This form of the RNN was developed in the 1980s. Similar to other neural networks, 
multiple layers of neurons are connected by weights, with each weight being altered via 
back-propagation methods. We alter our weights based on an evaluation statistic, which 
in this case is the weighted sum of the activation units at a given time step. The total 
error is the sum of all these individual weighted sums across all time steps. There may be 
teacher-driven target activations for some of the output units at certain time steps. For 
example, if the input sequence is a speech signal corresponding to a spoken digit, the 
final target output at the end of the sequence may be a label classifying the digit. For each 
sequence, its error is the sum of the deviations of all target signals from the corresponding 
activations computed by the network. For a training set of numerous sequences, the total 
error is the sum of the error of all individual sequences.

Training RNNs with Back-Propagation Through 
Time (BPPT)
Sepp Hochreiter and Jurgen Schmidhuber, among others, are considered among the 
greatest pioneers for development of training methods for deep learning. The standard 
method is called back-propagation through time (BPTT). BPTT is roughly the same as 
regular back-propagation, except it was created to deal with a specific problem that RNNs 
have, which is the fact that we are evolving a model through various time steps. For each 
training epoch, we begin by first training on reasonably small sequences and gradually 
increasing the length of the aforementioned training sequence. Intuitively, this is typically 
envisioned as training on a sequence of length 1,2, through N, where N is the maximum 
possible length of the sequence. Here is an equation describing this phenomenon more 
succinctly

Figure 6-1. Architecture of recurrent neural network
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d dp j
h

m

ph hj pjt t u f s t, -( ) = ( ) -( )( )¢å1 1

where t = time step, h = index for hidden node at t, j = hidden node at step t = 1, and δ = errors.
In detail, we can view the phenomena as the following: we define W as the matrix of 

weights for the output layer with the equation

W t W t t to

T+( ) = ( )+ ( ) ( )1 hs e

where e
o
 = errors from the output layer:

e d yo t t t( ) = ( )- ( )

We now have k sequences, through which we unfold the network into a regular  
feed-forward network that we’ve been observing up until this point. However, the recurrent 
layer in RNN model simultaneously takes the input from the preceding layer as well as the 
successive layer. To offset the change in weights that occurs from simultaneous inputting 
when back-propagating the errors, we average the updates that each layer receives.

Elman Neural Networks
RNN architectures received additional contributions from Jeffrey Elman, who is credited 
with creating the Elman network model named after him. Primarily, the architectures 
Elman constructed were for language-processing algorithms, but they can also be useful 
for any problem in which the input data is sequential or time-series based. Figure 6-2 
shows the basic structure of an Elman network.

Figure 6-2. Illustration of Elman network
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Elman included a layer of context units in this architecture that are distinguished 
by the fact that their functionality is highly concerned regarding prior internal states. 
One of the key distinctions of an Elman network is for the output of the hidden layer to 
feed into the context units in the preceding layer as well, but the weights that connect 
the context units and hidden layer have a constant value of 1, making the relationship 
linear. After this, the input layer and context layer simultaneously activate the hidden 
layer, whereupon the hidden layer also outputs a value while performing the update step. 
During the next epoch, the training sequence previously described occurs the same way, 
except here we observe that the layer with the context units now adopt the values of the 
hidden layer from the prior epoch. This feature of the context units colloquially has been 
described as the network having memory. Training this neural net requires a multitude of 
steps, the number of which ultimately depends on the length of the string being chosen.

Neural History Compressor
The vanishing gradient specifically refers to the gradients in earlier layers of a network 
becoming infinitesimally small. This occurs due to whatever activation function we 
use, usually a tanh or sigmoid. Because these activation functions “squash” the inputs 
into relatively small ranges to make interpolating the results easier, it makes deriving 
the gradients significantly more difficult. Repeat this process of squashing inputs after 
multiple stacked layers, and by the time we back-propagate to the first layer, our gradient 
has “vanished.” The problem of vanishing gradients was partially dealt with via the creation 
of neural history compressors—an early generative model implemented as an unsupervised 
“stack” of recurrent neural networks. The input level learns to predict its next input from the 
previous input history. In the next higher-level RNN, the inputs are comprised of only the 
unpredictable inputs of a subset of the RNNs in the stack, which ensures that the internal 
state is recomputed rarely. Each high-level RNN thus learns a compressed representation 
of the information in the RNN below. By design, we can precisely reconstruct the input 
sequence from the sequence representation at the highest level. When we’re using 
sequential data with considerable predictability, supervised learning can be utilized to 
classify substantially deeper sequences via the highest-level RNN.

Long Short-Term Memory (LSTM)
LSTM is an increasingly popular model whose strength is handling gaps of unknown size 
between signals in the noise of the data. Developed in the late 1990s by Sepp Hochreiter 
and Jurgen Schmidhuber, LSTMs are universal such that when enough network units are 
present, anything a computer can compute can be replicated with LSTMs, assuming we 
have a properly calibrated weight matrix. Figure 6-3 illustrates.
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The range of applications of LSTMs explains their popularity in part, as they are 
often used in the fields of robot control, time series prediction, speech recognition, and 
other tasks. In contrast to the units that we often see in other RNN architectures, LSTM 
networks contain blocks. Other key distinguishing factor of LSTMs is being able to 
“remember” a given value for extended periods of time and the gates within the model 
determining several attributes of the input sequence. Among the considerations of the 
gates are input significance, when should memory be kept or “garbage collection” occur 
and data be removed, and output value time. A typical implementation of an LSTM block 
is shown in Figure 6-3. The sigmoid units in a standard LSTM contain the equation

y s w x
i

N

i i=
æ

è
ç

ö

ø
÷

=
å

1

,

where s is a squashing function (in many cases, often a logistic function or any activation 
function, as described in prior models). Looking at Figure 6-3, the sigmoid unit furthest 
to the left feeds the input to the LSTM block’s “memory.” From this point forward, the 
other units in the figure serve as the gates, which either permit or deny access into the 
LSTM memory. The unit entitled i, which we denote as the input gate of the diagram, will 
block all values from entering the memory that are very small (close to zero). The forget 
gate, the unit at the bottom of the figure, “forgets” whatever value it was remembering 
and discards this from the memory. The unit in the top righthand corner of the figure is 
the “output gate,” which determines whether the value stored in the memory of the LSTM 
should be outputted. Occasionally, we observe units that are denoted by the following 
symbols: P or Σ. Units that have the summation symbol are fed back into the LSTM 

Figure 6-3. Visualization of long short-term memory network
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block as to facilitate remembrance of the same value over many time steps sans value 
decay. Typically this value is also inputted into the three gate units improve their respect 
decision making processes. The Haramard product, or entrywise product of matrices 
used in LSTMs, is given by the following in index notation:

A B A x B
i j i j i j( ) =
, , ,

Traditional LSTM
Above, we have the layers of an LSTM through which our data passes

f W x U h bt g f t f t f= + +( )-s 1 ,

i W x U h bt g i t i t i= + +( )-s 1 ,

o W x U h bt g o t o t o= + +( )-s 1 ,

c f c i W x U h bt t t t c c t c t c= + + +( )- - 1 1s ,

h o ct t h t= ( )s ,

where x = input vector, h
t
 = output vector, c

t
 = cell state, (W, U, b) = paramter matrices 

and vector, (  f
t
, i

t
, and o

t
) = remembered information, acquired information, and output, 

respectively, s
g
 = sigmoid function, s

c
 = original hyperbolic tangent, s

h
 = original 

hyperbolic tangent.

Training LSTMs
BPPT is used for LSTMs, but due to special features of the LSTM, we can also use gradient 
descent via BP as we would traditionally. Vanishing gradients in LSTMs are handled 
specifically by the error carousel. LSTMs “remember” their back-propagated errors, which 
are then fed back to each of the weight. Thus, regular back-propagation is effective at 
training an LSTM block to remember values for very long durations of time.
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Structural Damping Within RNNs
If we’re using a conjugate gradient method and it strays too far from the original x, the 
curvature estimate becomes inaccurate and we may observe an inability to converge 
upon the global optimum. Suggested by Martens and Sutskever, structural dampening is 
recommended when using conjugate gradient methods. With this method, we penalize 
large deviations from x, where the formula is given by

 f x x f x xd ( ) ( ) ,+ = + +D D Dl x
2

where ||Δx||2 is the magnitude of the deviation. λ, similar to ridge regression, serves as a 
tuning parameter.

The tuning parameter is adaptive and is chosen via a process similar to that of 
the Levenburg-Marq algorithm described in Chapter  3. It is suggested that we find a 
reduction ratio, given by the following equation:

r º
f

f

( ) ( )

( ) ( )

x + x f x

x + x f x

D
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- 

Tuning Parameter Update Algorithm
Weights are updated at each time step and as such augmenting the value in this matrix 
can cause drastic changes in the output:
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http://dx.doi.org/10.1007/978-1-4842-2734-3_3
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Practical Example of RNN: Pattern Detection
Let’s take the example of trying to predict time series based sequential data. In this 
instance, we’re going to try and predict the production of milk at different times of the year 
(Figures 6-4 and 6-5). Let’s begin by examining our data to get an understanding of it:

#Clear the workspace
rm(list = ls())
#Load the necessary packages
require(rnn)

#Function to be used later
#Creating Training and Test Data Set
dataset <- function(data){
  x <- y <- c()
  for (i in 1:(nrow(data)-2)){
    x <- append(x, data[i, 2])
    y <- append(y, data[i+1, 2])
  }
  #Creating New DataFrame
  output <- cbind(x,y)
  return(output[1:nrow(output)-1,])
}

When working with time series data, we will have to perform a significant amount 
of data transformation. Particularly, we must create X and Y variables that are slightly 
different from the given data. From the dataset() function, we create a new X variable, 
which is time step t, from the original Y variable. We make a new Y variable that is t + 1 
from the original Y variable. We then truncate the data by one row such that we remove 
the missing observation. Moving forward, let us load and visualize the data (shown in 
Figures 6-4 and 6-5):

#Monthly Milk Production: Pounds Per Cow
data <- read.table("/Users/tawehbeysolow/Downloads/monthly-milk-production-
pounds-p.csv", header = TRUE, sep = ",")
#Plotting Sequence
plot(data[,2], main = "Monthly Milk Production in Pounds", xlab = "Month", 
ylab = "Pounds",
     lwd = 1.5, col = "cadetblue", type = "l")
#Ploting Histogram
hist(data[,2], main = "Histogram of Monthly Milk Production in Pounds", xlab 
= "Pounds", col = "red")
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As you can see, our data has a heavy right skew with respect to the frequency of 
values, despite the seemingly wide range of values.

Figure 6-4. Visualization of sequence

Figure 6-5. Visualization of milk data via histogram
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Now that you’ve visually understood our data, let’s move on and prepare our data to 
be inputted into the RNN:

#Creating Test and Training Sets
newData <- dataset(data = data)

#Creating Test and Train Data
rows <- sample(1:120, 120)
trainingData <- scale(newData[rows, ])
testData <- scale(newData[-rows, ])

I recommend that all users use max-min scaling prior to inputting their data into an 
RNN, because it significantly helps with reducing the errors from a given neural network. 
Similar to standard normalization, max-min scaling significantly reduces the range of 
your input data set, but it does so by classifying observations between 0 through 1 rather 
than by returning how many standard deviations away from the mean the data is. After 
we have performed this step, we can input our data. Users may feel free to experiment 
with the parameters, but I have trained the network for good performance.

Now let’s evaluate our training and test results (shown in Figures 6-6 and 6-7):

#Max-Min Scaling
x <- trainingData[,1]
y <- trainingData[,2]

train_x <- (x - min(x))/(max(x)-min(x))
train_y <- (y - min(y))/(max(y)-min(y))

#RNN Model
RNN <- trainr(Y = as.matrix(train_x),X = as.matrix(train_y),
learningrate = 0.04, momentum = 0.1,
network_type = "rnn", numepochs = 700, hidden_dim = 3)

y_h <- predictr(RNN, as.matrix(train_x))
#Comparing Plots of Predicted Curve vs Actual Curve: Training Data
plot(train_y, col = "blue", type = "l", main = "Actual vs Predicted Curve", 
lwd = 2)
lines(y_h, type = "l", col = "red", lwd = 1)
cat("Train MSE: ", mse(y_h, train_y))

#Test Data
testData <- scale(newData[-rows, ])
x <- testData[,1]
y <- testData[,2]
test_x <- (x - min(x))/(max(x)-min(x))
test_y <- (y - min(y))/(max(y)-min(y))
y_h2 <- predictr(RNN, as.matrix(x))
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#Comparing Plots of Predicted Curve vs Actual Curve: Test Data
plot(test_y, col = "blue", type = "l", main = "Actual vs Predicted Curve", 
lwd = 2)
lines(y_h3, type = "l", col = "red", lwd = 1)
cat("Test MSE: ", mse(y_h2, test_y))

Figure 6-6. Training data performance

Figure 6-7. Test set performance
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Respectively, the training and test set have MSEs of 0.01268307 and 0.06666131. 
Although the MSE for the training set is lower, this is likely just because the training set is 
significantly larger than the test set. We can see how the test performance is less accurate 
than the training set by visually comparing the curves in the respective plots. As you can 
see, the actual curve in both the training and test sets exhibits higher variance than the 
RNN can completely capture. If you’re reading the e-book, the actual curve is in blue and 
the predicted curve is in red.

Summary
This chapter has effectively covered the most frequently mentioned RNN examples. It 
also walked the reader through tackling time series data problems. Chapter 7 addresses 
some of the most recent developments in deep learning and also explores how we can 
use these insights to tackle even more difficult problems.

http://dx.doi.org/10.1007/978-1-4842-2734-3_7


125© Taweh Beysolow II 2017 
T. Beysolow II, Introduction to Deep Learning Using R, DOI 10.1007/978-1-4842-2734-3_7

CHAPTER 7

Autoencoders, Restricted 
Boltzmann Machines, and 
Deep Belief Networks

This chapter covers some of the newer and more advanced deep learning models that have 
been gaining popularity in the field. It is intended to help you understand some of the recent 
developments in the field of data science. To see how these models are applied in a practical 
context, see Chapters 10 and 11, where we will be utilizing these in practical examples.

Autoencoders
Prior to discussing restricted Boltzmann machines (RBMs), I want to address a set of 
related algorithms. Autoencoders are known as feature extractors, in that they are able to 
learn the encoding/representation of data. The data inputted to an RBM would be the 
same data that we would input to any machine learning algorithm, but for the sake of 
simplicity we can imagine it as an M x N matrix where each column is a unique feature 
and each row a unique observation of N features. It is an unsupervised learning method 
that uses back-propagation to find a way to reconstruct its own inputs. Developed by 
Geoffrey Hinton, along with other researchers, autoencoders address the problem of how 
to perform back-propagation without explicitly telling the autoencoder what to learn from.

Autoencoders consist of two parts: the encoder and the decoder. Let’s look at a 
simple example of what we will denote as an n/p/n autoencoder architecture. This 
architecture is denoted by n p m, , , , , , , , ,G F A B X D  where the following are true:

 1. G Fand  are sets.

 2. n and p are positive integers where 0 < <p n.

 3. Let  be a function where : .G Fp n→

 4. Let   be a function where : .F Gn p→

http://dx.doi.org/10.1007/978-1-4842-2734-3_10
http://dx.doi.org/10.1007/978-1-4842-2734-3_11
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 5.  = …{ }∈x xM
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 = …{ }∈y yM
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 6. Δ is an L
p
 norm or some other loss/dissimilarity function.

For any A∈ , and B∈ , the autoencoder transforms the input x into an output 
vector:

x̂ A B x n= ( )∈ 

Broadly, the problem we seek to solve by using an autoencoder is ultimately an 
optimization problem—in this case, it is to minimize the loss/dissimilarity function. We 
define this problem as the following:

min min minE A B E x A B x x
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Linear Autoencoders vs. Principal Components 
Analysis (PCA)
For this example, let’s look at the similarities between principal components analysis 
(PCA) and linear autoencoders. The primary focus of PCA is to find the linear 
transformations of the original data set that contain the most variability within them 
in. When translating this analysis to the original data set, we use this to achieve 
dimensionality reduction. Chapter 8 talks about PCA in greater detail, but I will explain 
the relation it has to linear autoencoders here. Plainly stated, PCA is an orthogonal 
linear transformation where we seek to maximize the variance within each principal 
component subject to the constraint that each principal component is uncorrelated with 
each other. Let us define y as the following:

y Axi i= ,

where x n∈ and is the data set, and A nxn∈ and is the orthogonal covariance matrix. As 
is the case with PCA, each principal component should be listed in order of decreasing 
variance. We define the direction of maximum variance as the following:

ŵ
w X Xw

w ww

T T

T
=argmax

http://dx.doi.org/10.1007/978-1-4842-2734-3_8
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This by definition is a constrained optimization problem, solvable by using 
Lagrangian multipliers. Therefore, we can remodel the problem as

 w w Cw w wT t,λ λ( ) = − −( )1 ,

Cw w− =λ 0,

Cw w=λ

where C X XT= .

Single layer autoencoders will yield almost the exact same eigenvectors as PCA. That 
said, PCA assumes a linear system in its derivation in contrast to autoencoders that don’t. 
In the instance that we force linearity in an autoencoder, a similar answer will be reached.

To see applications of autoencoders, see Chapter 11, where we specifically use these 
models for anomaly detection and improving model performance for standard machine 
learning models.

Restricted Boltzmann Machines
In the 1980s, Geoffrey Hinton, David Ackley, and Terrence Sejnowski developed this 
algorithm, which can be described as a type of stochastic neural network. At the time, 
it represented a breakthrough in the science of deep learning because it was among the 
first models to be able to learn the internal representations of data and have an ability 
to solve difficult combinatorics problems. The standard restricted Boltzmann machine 
has a binary-valued hidden and visible unit, consisting of a matrix of weights, W, 
associated with the connection between a given set of hidden units and visible units, and 
a bias weight. The hidden, visible, and bias units can be thought as analogous to those 
same units that appear in a multilayer perceptron model. Given these, the energy of a 
configuration is stated as the following:

E v h a v b h vw h
i

N

i i
j

N

j j
i

N

j

N

i i j j,( ) = − − −
= = = =
∑ ∑ ∑∑

1 1 1 1
,

This energy function is similar to the output neurons of a Hopfield network  
(see Figure 7-1), which is a particular type of RNN. Created in the 1980s by John Hopfield, 
the inputs, as with other RNN models, typically would be data that we suspect to have 
some underlying pattern (a time series for example). The weighted sum of all inputs is 
calculated, whereupon it is inputted into a linear classifier such as a logistic function.  
We define the output as the following:
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http://dx.doi.org/10.1007/978-1-4842-2734-3_11
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After data is inputted to the model, all the nodes in the network receive specific 
values. The network is then subjected to a number of iterations using asynchronous 
or synchronous updating. After a stopping criterion is reached, the values within the 
neurons are displayed. The primary motivation for Hopfield networks is to discover the 
patterns stored in the weight matrix.

When referring back to the RBM model, the probability distributions that underlie 
the data are defined as

P v h
Z
e Z eE v h E v h, ,, ,( ) = =− ( ) − ( )∑1

,

P v
Z

e E v h( ) = ∑ − ( )1 ,

where e E v h− ( ),  = the exponential function, and the superscript is the negative value of the 
energy function previously described.

RBMs and bipartite graphs share similar properties. As such, the activations from the 
hidden units are mutually independent given the activations from the visible units such 
that

P v h P h v P h v P h v
i

N

j
j

N

j| | , | |( ) = ( ) ( ) = ( )
= =
∏ ∏

1 1

,

Figure 7-1. Visualization of a Hopfield network
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and the individual activation probabilities are
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where a = activation unit.
The values of the visible units of an RBM can be derived from a multinomial 

distribution, whereas the values of the hidden units are derived from a Bernoulli 
distribution. In the instance that we use a softmax function for the visible units, we have 
the following function:
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The optimization of the weights inside an RBM is performed traditionally by using 
gradient descent via back-propagation until we’ve converged upon an optimal solution. One 
of the most popular use cases for RBMs has been to populate missing values within a data 
set, specifically in the case of collaborative filtering. Chapter 11 looks at a simple example of 
performing collaborative filtering. If you’re interested in reading about performing this with 
RBMs, search for the paper by Salakhutdinov et al. on using RBMs for collaborative filtering 
(http://www.machinelearning.org/proceedings/icml2007/papers/407.pdf).

With respect to implementations of RBMs, there are a few packages that you may 
feel free to explore, such as deepnet, darch, and other implementations online. If you 
feel advanced enough, you may also seek to create your own implementation. In the 
meantime, you should check for updates to deep learning frameworks to see if/when they 
add RBM implementations.

Contrastive Divergence (CD) Learning
Developed by Hinton, contrasting divergence (CD) learning is a standard method of 
training restricted Boltzmann machines. It’s based on the idea of using a Gibbs sampling, 
run for k steps, where it is initialized with a training example of the training set and yields 
the sample after k steps. It has broader applications as a training method for undirected 

http://dx.doi.org/10.1007/978-1-4842-2734-3_11
http://www.machinelearning.org/proceedings/icml2007/papers/407.pdf
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graph models, but its most popular use case is the training of RBMs. I’ll begin this 
discussion by defining the gradient of the log likelihood:
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Intuitively, we define the log-likelihood as the probability of a parameter having 
some value. Above, we define the sig() function as the signum function, which returns the 
sign of a input.

We define the gradient of the log-likelihood of training pattern v with the following 
equation:
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Now, returning to our initial discussion, we approximate the gradient of the  
log-likelihood of training pattern v as the following:
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The derivatives of each single parameter are calculated from the approximation 
just given with respect to the expectations over p(v). In batch learning, we compute 
the gradient over the entirety of the training set. However, there are instances where it 
would be computationally more efficient to run this approximation over a subset of the 
training data set, which we denote as a mini-batch. If we evaluate a single element of the 
training set when performing this approximation, it’s known as online learning. In RBMs, 
we refer to the reconstruction error as the difference between the actual input and the 
predicted input, which falls drastically from the beginning of training moving forward. It is 
suggested that this metric be used, but proceed with caution. CD learning is approximately 
optimizing the KL divergence between the training data and the data produced by the 
RBM and the Gibbs chain’s mixing rate. That said, the reconstruction error often can be 
deceptively small if the mixing rate is also small. As the weights within the RBM increase, 
typically we observe the mixing rate to move inversely. But a lower mixing rate doesn’t 
always necessarily mean a model is superior to one in which there is a higher mixing rate.

RBM weights, similar to other deep learning models, are typically initialized using 
values randomly sampled from a normal distribution or other infinitesimally small 
values. With respect to the learning rate, the same considerations with gradient methods 
must be taken into account, particularly being careful not to choose a learning rate that’s 
too large or too small. With that being said, an adaptive learning rate may cause issues as 
it will give the appearance that the model is improving due to a lower reconstruction 
error, however, as explained earlier, this may not always be the case. It is recommended 
that each weight update generally be about 10 3−  times the current weights. Initial hidden 
biases and weights typically are initialized by selecting them randomly from a normal 
distribution, as is standard operating procedure for other neural network models.
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Momentum Within RBMs
To increase the speed of learning within an RBM, momentum is a recommended method. 
Imagine a gradient plot such as the one in Figure 7-2. If we can imagine the error 
represented by a point on one of the circles, the dot gains “momentum” as it moves closer 
to the minimum—but it loses momentum if it tries to go past that point and upwards 
along the sphere on the opposite side.

Rather than the traditional gradient descent formula, the momentum method 
incrementally affects the velocity of the parameter update. We define momentum as the 
percentage of the velocity that is still present after a given epoch; we assume that over time 
the velocity of a parameter decays. In effect, the momentum method causes the update 
of the parameters to move in a direction that is not the steepest descent, as with a typical 
gradient method except less intricate. When using the momentum method, it is suggested 
that the momentum parameter, α, be set to .5. When it becomes more difficult to reduce 
the reconstruction error any further, the momentum should be increased to .9. If we 
notice instability in the reconstruction error—typically noted by occasional, incremental 
increases—we reduce the learning rate by factors of 2 until this phenomenon subsides. We 
define the momentum method of updating a parameter as follows:

∆θ α
θi i i
i

t v t v t
dE t

d
( ) = ( ) = −( )− ( )

1 

Figure 7-2. Gradient plot
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Weight Decay
Weight decay can be viewed as a form of regularization, similar to that of the parameter 
regularization seen in ridge regression and/or LASSO. In RMBs, we typically use a 
Euclidean norm, which we denote as cost of the weights. Commonly, practitioners take 
the derivative of the penalty term and multiply it by the learning rate. This prevents the 
learning rate from changing the objective function we are trying to optimize. Weight 
decay helps reduce overfitting in such a way that the solution achieved doesn’t have units 
with unusually large weights or weights that are either always on or off. It also improves 
the mixing rate, in reference to the Gibbs sampling we perform, making CD learning more 
accurate. Geoffrey Hinton suggests that initially a weight cost of 0.0001 be used.

Sparsity
Generally, a good model is one that has hidden units that are active only part of the time. 
The reason is that models with sparsely active units are considerably easier to interpret 
compared to models that are densely populated with active units. We can achieve sparsity 
by specifying the probability of a unit being active, performed by using regularization. 
This probability is denoted by q and is estimated by

q q qnew ild current= + −( )λ λ1 ,

where q
current

 = mean activiation probability of hidden unit
The natural penalty measure to use is the cross entropy between the desired and 

actual distributions:

Sparsity penalty plogq p q∝− − −( ) −( )1 1log

As suggested by Hinton, we seek to have a sparsity target as low as 0.19 and as high 
as 0.01. We denote the decay rate as λ, which refers to the estimated sparsity value. This 
should be no higher than 0.99 but higher than 0.9. We should reduce the sparsity cost 
if the probabilities we calculate are clustering around the target value, and a general 
suggestion for modeling this is to collect a histogram of mean activities when collecting 
random samples.

No. and Type Hidden Units
Being that often the main consideration is that we seek to avoid overfitting. As such, we 
generally will try to use fewer hidden units rather than more. Particularly, if the data 
across the observations tends to be very homogenous, we also should try and use fewer 
rather than more hidden units. However, an instance in which it is reasonable to use 
more hidden units than normal would be if the sparsity target we’re trying to achieve 
happens to fall within a very small range (or is very small itself ). As for the type of units, 
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we can use Gaussian visible (and/or hidden), in addition to sigmoid and softmax units 
denoted by the following, respectively:
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Deep Belief Networks (DBNs)
The final model I’ll address is the deep belief network (DBN), shown in Figure 7-3, 
another innovation from Geoffrey Hinton. To make a DBN, we stack together restricted 
Boltzmann machines and train the layers one at a time. Typically, we use DBNs for 
unsupervised learning problems.

In a 2006 paper, Geoffrey Hinton and Simon Osindero, both researchers at the 
University of Toronto, describe an algorithm useful for fast learning. The difficulty posed 
by training networks with many hidden layers inspired the creation of a hybrid model. The 
main attraction of this model, in relation to the training problem, is that by design there 

Figure 7-3. Visualization of a deep belief network
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are complementary priors that allow us to easily draw from the conditional probability 
distribution. This is done by starting with a random configuration a layer deep within the 
network. We then pass through each layer of the network, in which the state of a given 
layer is determined by a Bernoulli trial. The parameters for the Bernoulli function are 
derived from the input received from the preceding layer in the initial “top-down” pass.

Fast Learning Algorithm (Hinton and Osindero 
2006)
Data is generated from an RBM by taking a random state within a given layer and 
performing Gibbs sampling over it. Simply stated, Gibbs sampling is a type of Monte Carlo 
method in which we try to obtain a sequence based on a probability distribution that the 
user specifies, but which the algorithm tries to approximate. Typically, the distribution 
is multivariate. All units within a chosen layer are updated in a parallel fashion, and this 
is repeated until we’ve determined to be sampling from the equilibrium distribution. In 
Figure 7-4, we can see the visible and the hidden layers of an RBM.

Each weight uses a visible unit, i, and a hidden unit, j. When a data vector is 
“clamped” on the visible units, the hidden units are sampled from their conditional 
distribution, which is factorial. The gradient of the log probability is given by the following:

∂ ( )
∂

= − ∞ ∞
log p

w
v h v h

i j
i j i j

v0

,

0 0

When we minimize the KL divergence, we in effect maximize the log probability. 
If you would like to learn complicated models, break up the single model into smaller, 
simpler models. After this point, these models can be learned sequentially. An example 
of this sequential learning would be gradient boosting, as discussed in Chapter 3. 
Reasonable approximations for W

0
 are learned based on the assumption that higher 

layers derive the complimentary prior for W
0
. In practice, we can achieve this outcome 

by assuming that all the weight matrices must be equal to one another. When solving this 

Figure 7-4. Visualization of restricted Boltzmann machine

http://dx.doi.org/10.1007/978-1-4842-2734-3_3
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constrained optimization problem, learning becomes significantly easier than before, and 
the problem itself is reduced to learning an RBM, whereupon good approximate solutions 
are achieved via minimizing contrastive divergence.

Algorithm Steps
 1. Under the assumption that all the weight matrices are tied, 

learn W0.

 2. Use W0
T to infer factorial approximate posterior distributions 

over the states of the variables in the first hidden layer.

 3. Learn an RBM model with respect to high-level abstractions 
of the data generated by W0

T.

 4. Repeat until convergence upon an optimal solution.

If the weight matrices in the higher levels of the model change, we are guaranteed to 
see improvements in the model. The bound given becomes an equality if Q(. | )v0  is the 
true posterior of the data. Hinton specifically suggests a greedy learning method, as 
described in Neal and Hinton (1998). The energy of a given configuration of v0, h0 is 
defined as

E p pv h h v h0 0 0 0 0, ,( ) = − ( )+ ( ) log log |

with a bound of

log log logp Q p Q
h h

v h v h v h h v
all all

0 0 0 0 0 0 0

0 0

( ) ≥ ( ) ( )+ ( )  −∑ ∑| | | 00 0 0( ) ( )log Q h v|

where h0= binary configuration the initial hidden layer units, p(h0) = the prior of the 
current model h0, and Q(. | )v 0  = probability distribution over the initial hidden layer’s 
binary configurations.

Summary
This brings us to the end of discussing autoencoders, RBMs, and DBNs. This also 
concludes all the chapters on deep learning models. Now that we’ve discussed these 
models, it’s time to turn our attention to experimental design and feature selection 
techniques to help you increase the accuracy of your machine learning models.
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CHAPTER 8

Experimental Design and 
Heuristics

After having reviewed all the machine learning and deep learning models that will be 
relevant to problem solving that you will encounter, it’s finally time to talk about useful 
methods of structuring your research, both formal and informal.

Beyond just knowing how to properly evaluate the solutions developed, you should 
be familiar with the concepts associated with the field of experimental design. Ronald 
Fisher, an English statistician prominent in the 20th century, was one of the most 
influential figures in the field of statistics. His techniques are frequently referenced when 
performing experimentation and are useful to review even if you don’t use them explicitly.

Analysis of Variance (ANOVA)
ANOVA is group of methods that are used to study the variation among groups of 
observations within data. An extension of the z and t test, and similar to regression, we 
observe the interaction between the response and explanatory variables. We assume 
that the observations within the data are independent and identically distributed (IID) 
normal random variables, that residuals are normally distributed, and that variance is 
homogenous. Among the multiple ANOVA models are the following ones discussed in the 
rest of this section.

One-Way ANOVA
Used to compare three or more sample spaces’ means/averages to one another. 
Specifically, it’s used in cases where the classification is performed by one variable/factor 
that has two or more levels.

Two-Way (Multiple-Way) ANOVA
This is similar to one-way ANOVA, except this model can be used where there are two or 
more explanatory variables.
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Mixed-Design ANOVA
In contrast to the prior models described, mixed-design ANOVA is distinguished by 
having one of the factor variables be analyzed across subjects and the other factor be a 
within-subjects variable.

Multivariate ANOVA (MANOVA)
This one is similar to one-way and two-way ANOVA, except it is particularly used to 
analyze multivariate sample means, or when there are two or more explanatory variables 
in a given data set.

Having addressed the various ANOVA models, the next section talks about the 
method by which we evaluate the results: the F-statistic.

F-Statistic and F-Distribution
Named after Ronald Fisher, the F-statistic is the ratio of two statistical variances. 
F-statistics are based upon the F-distribution, a continuous probability distribution (see 
Figure 8-1). We denote this distribution as the null distribution of a given test statistic for 
the F-test. Let’s assume we have variables A and B such that they both have chi-square 
distributions with n and d degrees of freedom respectively such that
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Say, for example, we’re considering a one-way ANOVA and assume that the means of 
a set of populations are equal and normally distributed. We define the F-statistic as
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where k is degrees of freedom and n is the number of n response variables. The null 
hypothesis states that a model created using only an x-intercept and a model created 
by the user yield indistinguishable results (within a given confidence interval). The 
alternative hypothesis states that the model the reader creates is significantly better 
than a model featuring only the x intercept. Just as when testing any other measure of 
statistical significance, this is determined based on the threshold we want to set. (90% 
level of confidence, 95% level of confidence, and so on).

Let’s now use a toy example to apply and explain the concepts we just have 
addressed. For this example, we will be using the iris data set:

#Loading Data
data("iris")

#Simple ANOVA
#Toy Example Using Iris Data as Y
y <- iris[, 1]
x <- seq(1, length(y), 1)
plot(y)

Figure 8-1. PDF for F-distribution
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The data set will be utilized to create response and/or explanatory variables in the 
following experiments. In the first toy example, we take the first column of the iris data set 
(representing the sepal length of each observation) and make this explanatory variable. 
However, before we perform a one-way ANOVA, let’s validate the assumptions necessary to 
fit data to a linear model. We’ll begin by visually inspecting our data, as shown in Figure 8-2.

Immediately, we notice that the data is fairly linear in its orientation, featuring a 
positive slope. This is a good first indicator, but we should dig deeper to ensure that the 
rest of our assumptions are satisfied. In this instance, we’ll focus on plotting the residuals 
of a fitted model. By residuals, I mean the quantity left over from the remainder of the 
actual value minus the value predicted by the model. You should heavily utilize residual 
analysis when working with linear models, but also in general, because they provide great 
visual insight into how well a particular model works as well as the orientation of the data. 
In Figure 8-3, we see the following plots created from fitting a linear model for x and y:

plot(glm(y~x))

Figure 8-2. Visualization of data
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Note the graph in the top righthand corner of the four displayed in Figure 8-3. This 
is a quantile plot, which effectively displays how much the distribution of the residuals 
is normal. When closely inspecting the plot, we can see that a considerable amount of 
the data lies on the dotted 45-degree angle line, which is the marker of normality in the 
data. However—and as is the case usually—we notice that the tail ends tend to lift slightly 
above this line. It’s useful to note that almost always, the data we will qualify as being 
normally distributed will exhibit similar patterns. In the real world, most data tends to 
be close to normally distributed when we have enough of it, but it’s unlikely that it will 
be perfectly normally distributed. As such, we accept here that the data is normally 
distributed and move onto validating the remaining assumptions. When the data is 
normally distributed, it can be fit to a linear model and therefore we can reasonably 
estimate the values within the range of the x variable.

Because we also require that errors exhibit constant variance, let’s turn our attention 
to the plot in the top lefthand corner. Note here a plot with an x-axis that denotes the 
value that the regression outputted and a y-axis detailing the value of the residual. The 
horizontal line through the center of the plot represents the region where the fitted 
value is equal to the actual value, or where the residual for an observation is zero. When 
referring specifically to our data, we can see that generally speaking, the shape of the 
residuals plotted seems to be consistent from the left to the right side of the plot. As such, 
we would state that the residuals in fact do exhibit constant variance. If not, we would 
notice that there would distinct patterns in the shape of the scatter plot that would either 
become more exaggerated or less exaggerated from the left to right side of the plot.

Figure 8-3. Residual plot
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Most importantly, pay attention to the plot on the bottom righthand side of the 
figure. It addresses an important concept for understanding how certain data points can 
alter the fitted line of the regression model. Leverage is described as a relative measure to 
how large the difference in value a particular observation is from the rest of the data set. 
Observations that specifically have high leverage are denoted in R by placing the index 
adjacent to the data point. We define leverage with
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where e
i
2 = squared residuals of a given observation, s2= mean squared error of the model, 

p = the number of parameters in a model, h
i
= ith diagonal of the H matrix where 

H = ( )-X X X X yT T1
,  i = 1,2,…,n, and n = number of observations.

Typically, we consider an observation as being particularly influential if its Cook’s 
distance value is greater than 1 or if its distance value is greater than 4/n. Which threshold 
to use is ultimately up to you, but it’s obvious that this will depend on the case, and it’s 
worth inspecting on an experimental basis which provides a data set with more or fewer 
outliers, and how that would affect your end goal. If, for example, the purpose of an 
experiment is anomaly detection, it might be foolish to reduce the threshold such that 
more noise in the data set is qualified as a signal. When referring back to our specific 
plot, we can see that a considerable amount of data points are being flagged as being 
influential. We will keep this in mind as we move forward with our model choice.

When assessing all the plots in the data set, we can confidently say that although 
there are outliers, and our assumptions aren’t met perfectly, the robustness of OLS 
regression allows these slight deviations to be overcome. As such, it’s reasonable 
to choose OLS regression as a model for this task, and therefore ANOVA will yield 
statistically significant results. When executing the code, we observe the following:

simpleAOV <- aov(y ~ x)
summary(simpleAOV)

             Df Sum Sq Mean Sq F value Pr(>F)
x             1  52.48   52.48   156.3 <2e-16 ***
Residuals   148  49.69    0.34
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Just as when we use the summary() function on a glm object, we are given a measure 
of its statistical significance. Instead of a Z-score, though, we’re given an F-score from the 
concept addressed prior to this example and its relative p score. In this instance, we can 
say with greater than 99% significance that the results we reject the null hypothesis. As 
such, this model is a significantly better fit than an intercept-only model, and therefore 
we can be more confident in its results. However, let’s say we’d like to compare more than 
one fitted model. As such, let’s inspect what happens when we include more than one 
variable, but study the interaction between the two of them as well.

As we can see in the following code, we use the second and third columns as 
explanatory variables in this model. When fitting our model, we multiply both explanatory 
variables together. When executing the code, we observe the following results:

#Mixed Design Anova
x1 <- iris[,2]
x2 <- iris[,3]
mixedAOV <- aov(y ~ x1*x2)
summary(mixedAOV)

             Df Sum Sq Mean Sq F value   Pr(>F)
x1            1   1.41    1.41    12.9 0.000447 ***
x2            1  84.43   84.43   771.4  < 2e-16 ***
x1:x2         1   0.35    0.35     3.2 0.075712 .
Residuals   146  15.98    0.11

Our residuals as significantly smaller, and all of variables are statistically significant 
within at least a 90% confidence interval. Let’s execute the following code and visually 
compare the two models in Figure 8-4:

par(mfrow = c(2,2))
plot(glm(y ~ x1*x2))
dev.off()
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We can see that all of the assumptions we need to fulfill are done so significantly 
better. Virtually all the residuals are normally distributed as displayed in the normal Q-Q 
plot, the residuals exhibit constant variance, and a considerably smaller amount have 
leverage. As such, when choosing between the two models we’ve defined, it’s reasonable 
for us to choose the second of the two in comparison to the first.

This is a brief example of how we can use ANOVA in the course of model selection. In 
Chapters 10 and 11, you will learn to effectively perform these same analyses with respect 
to comparing deep learning and machine learning algorithms.

Let’s now discuss in greater detail how to structure our experiments, with the 
guidance of Fisher’s principles.

Fisher’s Principles
Ronald Fisher, one of the most distinguished statisticians of all time, gave an explanation 
of principles for experimental design. The following are descriptions of his principles, as 
well as general advice with respect to how you might want to implement them:

 1. Statement of Experiment: You should explicitly state the 
scenario that inspired the experiment, very explicitly giving an 
outline of the steps that will be taken place in the experiment 
on a very high level. It is generally accepted that the 
introduction should include a high-level overview of the topic, 
and each section should describe a different component in 
greater detail, logically progressing from beginning of the 
experiment to the end.

Figure 8-4. Mixed design ANOVA plot

http://dx.doi.org/10.1007/978-1-4842-2734-3_10
http://dx.doi.org/10.1007/978-1-4842-2734-3_11
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 2. Interpretation and its Reasoned Basis: From the beginning, it’s 
reasonable to give what you might expect to be the reasonable 
outcomes. You should state the outcomes that you feel must 
be considered, but realize that providing an endless list of 
outcomes for those to whom you report is not likely to be very 
helpful. Moreover, when discussing all the possible outcomes, 
do so in a manner that provides actionable insights for those 
reading your research. Research that does give actionable 
insights self-evidently leaves more room for misapplication.

 3. The Test of Significance: In the context of evaluating machine 
learning and deep learning solutions, a simple suggestion is to 
bootstrap the test statistics used to evaluate a given model. It’s 
reasonable to assume that if you draw enough test statistics 
over a long enough time, the data will be normally distributed. 
From this point, a Z-test can be performed to determine 
the reasonable level of statistical confidence one has in the 
model.

 4. The Null Hypothesis: This hypothesis should state that the 
results shown have no significance, and any deviation 
between testing populations is due to some extraneous 
error such as improper sampling or deviations from proper 
experimental practices. This must be a component of all 
statistical testing.

 5. Randomization: The Physical Basis of the Validity of the 
Test: When performing a test, the results reached should 
be performed in a manner such that this outcome was 
not biased. In some cases, this may require randomized 
observations of data to remove any inherent biases present 
in the modeling of the experiment that would lead to some 
results.

 6. Statistical Replication: The results reached from a test should 
and must be replicable. Results reached that are unreasonable 
given the constraints inherent to the data set and environment 
in which we expect to observe such an occurrence are not as 
valuable as results that are replicable.

 7. Blocking: The process by which different experimental groups 
are compartmentalized such that different variations and 
biases are reduced or prevented entirely from affecting the 
results of an experiment.
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Plackett-Burman Designs
Created in the 1940s by Robin Plackett and J. P. Burman, Plackett-Burman designs are 
a method of finding a quantifiable dependence of explanatory variables, which we call 
factors in this case, of which each factor has L levels. The overall objective is to minimize 
the variance of the estimates of dependencies using a limited amount of experiments. To 
fulfill this goal, an experimental design is chosen such that each combination for any given 
pair of factors appears an equal number of times throughout each experimental “run.”

The Plackett-Burman design requires a small number of experiments, specifically 
a multiple of 4 up to 36, and that the design have N samples that can study up to k 
parameters, where k = N – 1. In the case that L = 2, an orthogonal matrix in which each 
element is either –1 or 1 is used. This matrix is also known as a Hadamard matrix. This 
method is useful for identifying the main effects of different factors on the response 
variable, such that we can eliminate factors that seem to have little to no effect. Plackett 
and Burman themselves give specific designs for L equaling 3, 4 , 5, and 7.

Have a look at the matrix in Figure 8-5, which visually depicts a Plackett-Burman 
design. When performing this design of experiments (DOE), you must write the 
appropriate row as the first row of the design table. In this instance, we begin with a 
+, -, +, -, +, +. This is a permutation of the sequence that appears in every row, which 
represents a treatment combination. You can think of a treatment combination as a 
unique combination of a feature set. The second row is then created by shifting sequence 
in the prior row to the right by one column. This process is repeated for each of the 
remaining rows. The final row features all negative elements. It’s important to recognize, 
though, that Plackett-Burman designs can’t describe whether the effect on a given factor 
will result in the effect of another, and it similarly can’t know the effects themselves given 
a small enough design. This design is considered to be a preparatory step to data analysis, 
and it’s suggested that alternative preparatory steps be juxtaposed alongside it in addition 
to other steps taken subsequently afterwards.

Figure 8-5. Plackett-Burman matrix
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Space Filling
These methods don’t require discrete parameters, and the sample size is chosen 
independently from the total number of parameters. These are recommended for 
instances in which the reader would like to create response surfaces, but it should be 
noted that it becomes difficult to determine the main effects and interactions of a given or 
set of parameters respectively.

Full Factorial
Full factorial is one of the most popular methods of experimental design, in which  
N = 2^K, where k is equal to the number of factors. As an example, let’s have k factors 
where L = 2. In this model, we don’t distinguish between nuisance and primary factors 
prior to the experiment taking place. Given that L = 2, we will denote them as a high, “h”, or 
low, “l”, level. High-level factors receive a value of 1, and low-level factors receive a value of –1.  
We determine the interaction of the variables as the product of the individual factors. 
From any experiment that is possible given the factorial constraint, the samples in which 
the factors are changed one at a time are still a part of the sample space. This allows for 
the effect of each factor over the response variable. Let’s now also define M as the main 
intersection of a variable X. This is the difference between the average response variable at 
the high-level samples and the average response at the low-level samples. If we have three 
factors with two levels per factor, M for X_1 would be defined as the following:

M
y y y y y y y y

X
h h h h h l h l h h l l l l l l l h l h l l h

1 4
=

+ + +
-

+ + +, , , , , , , , , , , , , , , ,,h

4

If we wanted to see the interaction between two or more factors, the equation would 
be the same, except the interaction of the variables would be represented by the product 
of the variables, rather than the individual values a factor possesses at a given state. 
Both of the main effects and the intersection effect statistics give an effective method 
of determining the degree to which individual, or combinations of, factors affect the 
response variable. Full factorial designs do not complicate the data in any such manner 
and present a transparent method of examining variable effects. If there are more than 
two levels, an adjustment must be made to take the average effect of all the levels on a 
given response variable, where the denominator is N, such that
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Halton, Faure, and Sobol Sequences
Within the umbrella of space filling techniques, many of these are motivated by pseudo-
random number generators. Pseudo-random numbers are series-generating sets that 
pass randomness tests. We denote a pseudo-random number generator as the following 
function:

f g f g: , , , ,0 1 0 1 1 21, , k[ )®[ ) = ( ) = ¼-k k

We must choose a value of ϕ that gives a uniform distribution of γ
k
. A popular 

method to achieve this is the Van der Corput sequence, where we have a base, b, ≥ 2 and 
successive integer numbers n are expressed in their b-adic expansion form such that the 
following is true
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where a represents the coefficients of the expansion.
Halton sequences use base-two, base-three, and base-five for Van der Corput 

sequences in first, second, and third dimensions respectively. This pattern continues 
such that prime numbers are used for the base in every successive dimension. With this 
being said, multidimensional clustering causes high correlations between dimensions, 
effectively defeating the purpose of experimental design in and of itself. In an effort to 
combat this problem, Faure and Sobol sequences use only one base for all dimensions 
and a different permutation of the vector elements for each dimension.

A/B Testing
When designing applications, websites, and/or dashboard applications, it’s useful to 
determine the effect changes in certain functionality have on the product. We can imagine, 
for example, that an engineer is trying to determine with some statistical certainty whether 
the implementation of a new feature has had an effect on acquiring new users. For such 
situations, it’s recommended that the person use something known as A/B testing. 
Broadly, A/B testing refers to the statistical hypothesis testing methods used to compare 
two data sets, a control group and a test group, which are A and B respectively. We can also 
modify the test such that we can test A and multiple additional control tests.
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The motivation for A/B testing is simple in that the development of different 
products, regardless of whether they have machine learning or deep learning capabilities, 
allows us to determine with statistical confidence whether we have made improvements 
from the original iteration to the next. That said, we can use these processes as a series 
of experimentations to iteratively move from one generation of software to the next to 
observe the improvements in efficiency. Commonly, the beta-binomial hierarchical 
model is one of the most popular methods by which we can A/B test a control group over 
a multiple test groups. As such, we will review this model. First, however, let’s review a 
simple two-sample A/B test.

Simple Two-Sample A/B Test
Assume that here we’re comparing one control group against one test group and that 
we’re trying to see whether our new website generates more clicks due to feature changes. 
We will firmly show that although this test is stable for two examples, you should avoid 
using this for more than two samples. Let’s say that we have two data sets representing the 
different attributes of the various websites and we want to test within a 95% confidence 
level. For this, we would use a t-test. Now let’s also assume after the t-test is performed, 
we observe that the difference in the means is significantly different and that x2 is 
significantly improved from the prior model. Now let’s assume that we keep on making 
different versions of our web page and continuously try to use this model. After nine 
different tests, x2 still is proving to be the most superior model. But when we run x2, we 
actually see no difference in improvement from clicks from x2 to the other websites. This 
common problem with two-sample A/B testing is due to false positives.

Next, I’ll show the probability of ten individual hypothesis tests showing correct results 
via the binomial distribution. Let event A = x2 let’s say better than nine other counterparts 
at 90% confidence interval, B = x2 is better than nine other counterparts at 95% confidence 
interval, and C = x2 better than nine other counterparts at 99% confidence interval:

P P B P CA( ) = = ( ) = = ( ) = =. . %, . . %, . . %90 34 87 95 59 87 99 90 4410 10 10

Stated simply, under events A, B, and C we could expect that our experiments yield 
6.5, 4.013, and .95 false positives. Although the 99% confidence interval performs the best 
in this example, we can see under the other confidence intervals why this methodology 
would become a problem. As such, for testing multiple groups, it is recommended that we 
use the beta-binomial distribution.

Beta-Binomial Hierarchical Model for A/B Testing
Bayesian statistics is a school of thought on the concept of probability. Here, it becomes 
the theoretical underpinning for this model and also can be used to provide modified 
hierarchical models with respect to the distribution. In Bayesian statistics, we often refer 
to the prior and posterior distributions. The prior distribution refers to the probability 
distribution with respect to some parameter (data that we have already acquired), 
whereas the posterior refers to the probability distribution of some parameter with 
respect to the data (data which we want to acquire). The prior distribution and the 
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posterior distribution form a conjugate distribution. For ease of analysis, we typically 
seek to use distributions within the same family for the respect prior and posterior 
distributions, and that’s why in this hierarchical model we are using the beta and 
binomial distributions.

The beta distribution is a probability distribution bound within the interval [0,1] 
with parameters α and β that ultimately control the shape of the distribution. Typically, 
we use the beta distribution to statistically model random variables. As stated earlier, 
within the same family as the beta distribution is the binomial distribution. This is often 
used to model probability distributions that feature independent binary outcomes, such 
as coin flips. We define the probability density function for both the beta and binomial 
distributions (see Figures 8-6 and 8-7) respectively as

x x

a

a b

a b
b

- --( )
( ) ( )

+( )

1 1
1

G G
G

,

n

k
p pk n kæ

è
ç

ö

ø
÷ -( ) -

1

where n = the number of successes, k = total number of trials, and p = the probability of 
success.

Figure 8-6. Beta distribution
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We then model our posterior expectations from the beta distribution and the prior 
distribution as the binomial, whereupon we compare the difference in means between 
the prior and the posterior distributions to compare website performance.

Feature/ Variable Selection Techniques
Now that we’ve discussed several experimental design models, let’s talk about steps 
you would want to take after you have more of an understanding of the factors in a 
given data set. Variable selection seems to be directly related to experimental design, 
but this section will discuss more specific algorithms to be used for the purpose of 
reducing dimensionality and less exploratory methods for analyzing variables and their 
interactions with the response variable. This is important for a multitude of reasons, 
but can often be a major element of optimizing machine learning algorithms when 
deploying them. Feature selection is a much less tedious process than parameter 
tuning, particularly in deep learning models. As such, it can be a quick way to creating 
models that train quicker and produce more accurate outputs. As with many techniques 
described earlier, caution must be taken because too much feature selection can result in 
creating overfitted models.

Backwards and Forward Selection
Backward selection is one of the simplest variable selection methods and is particularly 
common when using simple or multiple linear regression. Preliminarily, you should take 
the data set with all explanatory variables and regress them against the response variable. 
After this step, choose a statistical significance level appropriate for the given situation 
(85%, 90%, 95%, and so on). One variable at a time, we remove the variables with the 
lowest statistical significance from the data set (such as the statistical significance yielded 
from the summary() function when using a glm() model). We the regress the new subset 
of the original data set and continue until all the variables in the data set are statistically 
significant. In forward selection, the process is the same as the prior method, except the 
distinction is that you start with a model with no variables, add variables, and check their 

Figure 8-7. Binomial distribution
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statistical significance. If they’re at or above the threshold, they should be added. If not, 
they should be removed. Considerations to keep in mind when using these methods are 
to reduce statistical noise considerably but to avoid a model that’s overfitted to the test 
data, particularly if out-of-sample prediction is the end goal to the model being built. You 
should also be careful to not remove too many variables as to reduce performance.

For deep learning, some models have feature selection embedded into them. 
Specifically, certain layers within CNNs arguably exist for the purpose of eliminating 
noise such that the data left is rich with information. Specifically, pooling layers can be 
thought of as doing this. By reducing the input size, we ease the computational load from 
input to output while also assisting the algorithm in more accurately tuning the weights 
between these layers and ultimately classifying an image.

Beyond using P-values, you can choose other statistical criteria to determine which 
variables to retain/remove. Among those most common are Akaike information criterion 
(AIC) and Bayes information criterion (BIC): 

AIC k L= -2 2ln( ),

BIC n k L= - ( )ln( ) l ,2 n 

ˆ ˆ| ,L p x M= ( )q

where L is the max likelihood function for the model, q̂  are the parameters, and k is the 
number of parameters.

AIC and BIC are very closely related. AIC is based within the field of information 
theory, and the goal is to choose a model with the minimum possible AIC value. By 
definition of the function, the greater the magnitude of the log-likelihood, the smaller 
the AIC value. Henceforth, models that are more closely fit to the data will ultimately 
have lower AIC values. BIC is ultimately motivated by Bayesian statistics and is similar 
to AIC. BIC scores specifically are used to evaluate the performance of a model on a 
training set, where we choose the model that yields the smallest BIC. In particular, 
BIC penalizes models that have more parameters rather than less. Because of this, BIC 
inherently prefers models that do not overfit to the data set, hence making a criterion 
by which you’re encouraged to choose a model that generalizes to the data you’re 
analyzing. Note that the BIC can’t handle complex collections of models, and it should 
only be assumed to be valid in instances of when n is substantially greater than k. With 
respect to considerations for AIC, the AIC values computed must be across the same data. 
Specifically, it’s not an objective measure such as the coefficient of determination.

Principal Component Analysis (PCA)
Principal component analysis (PCA) is one of the most commonly used variable selection 
techniques that can exclusively be used for numerical data. Mentioned earlier in several 
examples, PCA is a statistical method used to reduce dimensionality of data sets. Simply 
stated, we transform the data into new variables called principal components and 
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eliminate the principal components that explain negligible amounts of the variance 
exhibited within the data set. The benefit of this technique is that we preserve the 
variance of the data set while being able to perform visual and exploratory analysis much 
easier than prior to the transformation.

Our goal is to find the linear function of random variables from the x vector 
with the vector of constants from the alpha vector with the maximum variance. This 
linear function produces our principal components. Be that as it may, each principal 
component must be in order of decreasing variance, and each principal component must 
be uncorrelated with each other. Our objective is the following:

MaximizeVar x alphak k
i

k¢( ) =a a å

We seek to use constrained optimization, because without a constraint the value of 
a

k
 could be infinitely large. As such, we’ll choose the following normalization constraint, 

where ¢ =ak ka 1.

The Lagrange multiplier method is a tool for constrained optimization of 
differentiable functions. In particular, it’s helpful for finding local maxima and minima of 
a respective function subject to a given constraint. Within the context of the experiment, 
the Lagrange multipliers are applied as follows
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, and with the eigenvectors defined in 

decreasing order. If λ
1
 is the largest eigenvector, then the first principal component is 

defined as å a la1 1= . In general, we define a given eigenvector as the k-th principal 
component of x and that the variance of a given eigenvector is denoted by its 
corresponding eigenvalue. I’ll now demonstrate this process when k = 1 and when k > 2. 
The second principal component maximizes the variance subject to being uncorrelated 
with the first principal component with the non-correlation constraint being as follows:
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This process can be repeated up to k = p, yielding principal components for each 
of the p random variables. Limitations associated with PCA are numerous, though, 
and must be considered for the problem type. Foremost, PCA assumes that there are 
linear correlations across features. Obviously, this is not necessarily always the case 
in a practical context and therefore renders the results yielded by PCA questionable. 
Secondly, PCA only can be used on numerical data sets and the downfalls of numerically 
encoding categorical data (discussed later in this chapter) can add implicit biases that 
render the results of this technique useless. Moreover, PCA explicitly assumes variance is 
the most important statistic with regard to analyzing a data set. Although variance is often 
an important statistic, in some problem cases it might not necessarily be.

An example of how PCA can be applied to deep learning is through the process 
of PCA whitening. When we refer to whitening, we mean the process of making the 
input data less homogenous, in an effort to make the data less homogenous from one 
observation to another. In the instance of a CNN, this can be of great use for image 
classification. Specifically, in image data many pixels adjacent to one another often have 
similar, if not the same, values within a large region.

An example of this would be to look at the MNIST data set and see which patches 
of the image are black versus which are white. PCA whitening instead yields an 
eigendecomposition of the matrix such that this homogeneity is removed. As such, 
the features of each individual are significantly less similar than in their original form, 
but the variance within the data is preserved, as is a benefit when performing an 
eigendecomposition on a matrix.

Factor Analysis
Factors are unobservable variables that are highly correlated with one another and 
that influence a given explanatory variable. Unlike the ultimate purpose of PCA, 
dimensionality reduction, factor analysis seeks to locate independent variables. 
Moreover, we would like to determine what influence the factors have on the surface 
attributes. It’s built from the assumption that observed variables can be reduced to a 
subset which exhibit similar variance. In factor analysis, we require that the data must be 
normally distributed and that there are virtually no outliers within the data set. We also 
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should seek to analyze data that is numerous in it’s observations, and the correlations, 
while not nearly linear as to avoid multicollinearity, must be moderate to high across the 
data set. The typical factor analysis model is given by

X a F a F a F e j pj j j jm m j= + +¼+ + = ¼1 1 2 2 1, , , ,

Where e
j
 = the unique and specific factor to a given explanatory variable, j = factor 

loadings, X
j
 = an explanatory variable, and m = the underlying factors

Factor loadings can be thought of as weights, where they denote the degree to which 
they influence a given factor with respect to an individual variable. Surface attributes are 
denoted as the individual explanatory variables. Typically, a factor analysis model will 
yield factors such that there are no correlations between the individual variables, so we 
have independent variables, similar to principal components. It should be noted that 
factors are not created but are revealed based on correlations between surface attributes. 
Factors, which are unseen, can be intangible yet conceivable. For example, we could 
image factors within a given experiment being an individual’s reading or writing ability 
when compared to one individual. These attributes aren’t objective with respect to how 
we measure them, but when assessing a standardized test with a reading and writing 
section, for example, obviously affect a given person’s score.

Limitations of Factor Analysis
Factor analysis can find a method of obtaining patterns in data generated even from 
random numbers. As such, one should keep in mind that if structure can be found 
in random data, than the patterns they appear to observe in their structured data 
could also be misconceived. Moreover, the structure found in the data ultimately is a 
derivative of the variables/data set inputted into the factor analysis. Simply stated, there 
are not objective patterns in data sets that make themselves apparent, and ultimately 
restructuring of data sets/variables can cause significant divergence in the results yielded 
by a factor analysis. As such, how one interprets the results of a factor analysis ultimately 
is far more subjective than it may seem. That said, it is recommended that factor analysis 
be used alongside statistical methods and/or the data be structured such that it conforms 
to assumptions known to be true within the domain of the problem being handled.

Handling Categorical Data
Among all of the difficulties that you might come across, one of the greatest challenges 
comes with handling and analyzing categorical data, or data that is numeric. Typically, 
we often encounter categorical data as a factor variable with different levels. This section 
talks about some common problems that will be encountered along with possible 
solutions, with considerations to keep in mind.
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Encoding Factor Levels
For example, let’s say we have a data set where we are analyzing one variable, which is all 
of the streets in a given neighborhood. This is particularly interesting example because 
the streets could all be names, (such as “Maple Street,” “Spruce Street,” “Redwood Street,” 
and so on), or they could all be numbers (1st Street, 2nd Street, 3rd Street, and so forth). 
If the streets are names, we can take the approach, to encode the streets by number. This 
is an easy way to give each variable a unique identifier, but it has limitations. Machine 
learning algorithms will interpret the levels as an indication of value rather than a 
unique identifier, which in essence gives no descriptive data about the “quality” of the 
observation. To be specific, if we label “Maple Street” as 1 and “Spruce Street” as 2, many 
algorithms might interpret Spruce Street to be of higher importance than Maple Street, 
when there is no evidence to determine this. When considering the case of the numbers, 
this same problem is present, but it’s just implicit and not induced by label encoding. 
Another limitation of this technique is that if the encoded variable is highly correlated 
with other variables, multicollinearity might be introduced to the data set where it 
otherwise would not have existed.

Categorical Label Problems: Too Numerous Levels
In keeping with the example of using street names, we can imagine many cities where this 
would cause us to have a factor with hundreds or even thousands of individual streets. 
Although a variable with variation yields better results than a variable with absolutely 
none, this can also cause difficulties when performing model evaluation. As such, in 
these instances it can be a good idea to encode the variables and use a classification/
regression tree or random forest model. Also, a suggested method is to encode the 
variables and use K-means clustering to get the cluster number, whereupon we replace 
the levels with this variable. Although this still in many ways has the bias of the encoded 
variable we discussed before baked into the clustering observation, it’s nonetheless a 
method of reducing the levels effectively and should be explored when necessary.

Canonical Correlation Analysis (CCA)
Very closely related to PCA is canonical correlation analysis (CCA), a method of finding 
linear combinations of two variables such that they have the maximum possible 
covariance with each other. Typically, this is a data preprocessing technique and is 
appropriate in the same instances where multivariate linear regression would be used, 
but specifically when there are two sets of multivariable data sets that we want to examine 
the relationship between:

Given two vectors X Y m x n, Î  and directions a bÎ Î m nand :

a b a b

a b
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Wrappers, Filters, and Embedded (WFE) 
Algorithms
When assessing some of the more advanced variable selection techniques, we approach 
WFE algorithms. Wrapper algorithms are distinguished by running each feature subset 
possible over the data and evaluating the model performance, leading to the selection of 
a subset that performs the best with a given model. Embedded algorithms are explicitly 
written into the process of a model (L1 regularization with LASSO). Filter methods 
attempt to assess the merits of the feature by looking at the data itself rather than 
evaluating its performance on the methods alone.

Relief Algorithm
Designed by Aha, Kibler, and Albert in 1991, the relief algorithm is a feature-based 
weight algorithm inspired by instance-based learning. Each feature is assigned a weight 
denoting its relevance of the feature to the target. This algorithm is randomized and the 
updates of relevance values depend on the difference between the selected instance and 
the two nearest instances.

Algorithm
 1) Given x y w

In n n
, , ,( ){ } =

=1

0 1N
set T =  number of iterations,  

s = kernel width, q = stopping criterion.

 2) For t = 1 : T

  a. Calculate pairwise distances w.r.t. wt-1.

  b. Calculate P
m

, P
h
, and P

o
.

  c. Update weights.

  d. If w wt t- <-1 q , break.

Other Local Search Methods
Many of the algorithms addressed in the latter parts of this text will draw inspiration from, 
if not be directly related to, this subfield of optimization, typically used for computationally 
intensive optimization problems. We consider all possible solutions as being in a set we 
denote as the feature space or search space. The target is the global optimum that satisfies 
the optimization problem we seek to solve. Local search algorithms are initiated with a 
random element from the feature space and over each iteration chooses a new solution 
based on information yielded from the current neighborhood. After this stage, the 
algorithm will move to a given neighborhood in the nearest vicinity, but depending on the 
problem the search algorithm may choose more than one neighborhood.
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Hill Climbing Search Methods
Prior to the development of machine learning that occurred in the 1980s and 1990s, hill 
climbing tended to be one of the more popular search methods. Hill climbing forms 
the motivation for many newer search methods described in this chapter and is still a 
useful technique with respect to parameter tuning. As with other search methods, hill 
climbing seeks to optimize an objective function within the locality of the current point. 
Hill climbing works best for functions that have one maximum or one minimum, so as 
to allow the algorithm to find the solution of the problem with relative ease. However, it 
faces many problems for functions with an abundance of local minima. To combat this, 
many different heuristics and methods, like random restarts to avoid local minima and 
stochastic neighborhood selection for the search trajectory, have been added to the basic 
hill climbing algorithm.

Genetic Algorithms (GAs)
Genetic algorithms are considered a direct outgrowth of the field of artificial intelligence, 
as they directly mock the process of evolution. In this algorithm, several subsets of the 
total feature space “evolve” so that the next subset is statistically better than the last 
iteration. The evolution process stops when a better subset can’t be created, and the best 
of the subsets is chosen as the answer. The advantage of this algorithm over others is that 
genetic algorithms can accumulate information about a given feature space over many 
iterations, the process is inherently parallel so there is less probability of being stuck in 
local minima, and the algorithm in and of itself is relatively easy to understand. Among 
GAs’ limitations are the fact that if there is an abundance of local optima, the GA doesn’t 
always converge upon the global optimum. Also, this algorithm is likely not an optimal 
choice for deployment, because it has difficulty scaling, since the feature space size 
increases exponentially with the number of possible subsets.

Algorithm
• Choose an initial random population of solutions to choose from.

• Evaluate the solution based on some statistical criterion, such as 
MSE.

• Select the best individuals to be used.

• Generate new individuals by “mutating” the prior selected 
solutions.

• Evaluate the fitness of the new solutions.

• Stop when some criterion has been reached, such a loss 
tolerance.
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Simulated Annealing (SA)
Among the heuristic techniques we will cover, one of the few probabilistic models assessed 
is SA. Inspired in name from annealing in metallurgy, SA imitates the effect of slowly 
cooling as slowly decreasing the probability of accepting worse solutions. We consider 
each solution as a state and that the neighborhood in which the algorithm can search 
progressively gets smaller. The algorithm converges upon a solution either after the feature 
space has been entirely searched, or another stopping criterion has been reached. 1

Algorithm
• T = Temperature = hot, Frozen = Stopping Criterion.

• While (Temperature != Frozen), move to a random point in the 
feature space and compute ∆ Engery.

• If ∆Energy < 0 or loss tolerance, accept new state with probability 

e
E

T
-
D

 while system in thermal equilibrium at current T.

• If (E decreasing over last few iterations), T T itertion= +( )1 ,  
Else T = Frozen.

The greatest difficulty with SA is the amount of parameter tuning required, which 
becomes time consuming as the amount of feature (and corresponding feature space) 
increase in size. Furthermore, there isn’t a general baseline or rule of thumb for any of 
these parameters, further increasing the difficulty of this technique with heavily changing 
data sets. It should likely be considered more of a research technique than one you would 
deploy in an algorithm.

Ant Colony Optimization (ACO)
Ant colony algorithms (ACOs) are a set of optimization algorithms first introduced in 
the 1990s. Most useful for combinatorics problems, ACOs been used for tasks such as 
vehicle routing, computer vision, feature subset selection, quantitative finance, and other 
fields. The intuition is based on the activities of swarms of ants, and the ultimate goal is 
typically finding the best options given set of randomized options from a feature space. We 
can imagine an ant colony in this context to be a graph with nodes connected by edges, 
where each node represents one of the k features in the data set. The ant travels along 
the edges, “dropping pheromones” to attract more ants along subsequent iterations. The 
pheromones by design decay over time, but ants who travel along the shortest possible 
edges from point x to point y deposit more pheromones along a given path. Because ants 
are attracted to paths with more pheromones, this acts as the method by which an optimal 
solution is found. Each “ant” moves from one given state with a probability given by
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where 𝓇 xy
a  = pheremone deposited on a given path, η xy

b  = the proportion of the distance 
from x : y to the sum of all paths'distances, β = tuning parameter, J

i
K = neighbor nodes that 

have not been visited
With pheromones updated as
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 = pheremone deposited, and ρ = pheremone evaporation rate.
We denote Δτ

xy
 as the amount of pheromone dropped on a given path by an 

individual ant given by
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where Q = some constant, and L
k
 = a loss function defined by the user.

Although ACO problems are successful for instances in which there aren’t very 
large numbers of features, and it typically performs better than simulated annealing and 
genetic algorithms, the problems become exponentially more difficult to solve with the 
addition of more nodes. In addition to this, although convergence is guaranteed, it is 
uncertain as to when convergence actually will occur.

Algorithm
• Initialize by creating full solution space.

• While stopping criterion not reached, position each ant at a given 
starting node.

• For each ant, choose next node via state transition rule.

• Apply pheromone update until every ant has reached a given 
solution.

• Evaluate each solution based on the selection criterion.

• Update best solution and apply pheromone update on this path.

• Repeat until convergence upon global optimum.

Variable Neighborhood Search (VNS)
VNS is a family of feature subset selection algorithms that are meant to deal with 
combinatorics challenges and henceforth provide guaranteed convergence. Developed 
in the late 1990s, VNS was inspired by the desire to find solutions for discrete and 
continuous optimization problems (linear and nonlinear programming problems are an 
example). The assumptions within VNS are that a local minimum with respect to a given 
neighborhood is in theory perhaps not the local minimum in another neighborhood, that 
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local minima are relatively close to each other between one or more neighborhoods, and 
that a global minimum are local minima for all neighborhoods within the solution space. 
Among the algorithms available for VNS with respect to local search methods, there are 
related extensions that are more specified for given tasks. For feature-based selection, we 
will look at the filter-based algorithm for VNS.

Algorithm
• Find an initial solution S.

• Select the set of neighborhoods N
k
 for k = 1, …, j where j = # of 

neighborhoods and a stopping criterion.

• Set k = 1 and generate a random point S′ from the kth 
neighborhood of S S N Sk¢Î ( )( ) .

• Apply a search method such that the stopping criterion, if based 
on an objective function, is closer to being reached.

• If this solution is better than the prior solution, update the 
solution to the current one. Else, set k = k + 1 and retain the 
current solution.

• Continue until convergence upon global optimum or stopping 
criterion is reached.

Typically, we choose an information quotient or linear correlation as an evaluation 
function within these algorithms, but this is ultimately a parameter that can be altered. 
If you feel more advanced, feel free to implement your own deep learning and/or 
machine learning algorithms where instead of traditional gradient descent, you use one 
of the aforementioned search methods for parameter optimization. Although this can 
be difficult, it will provide you with an excellent exercise to get familiar with specific 
algorithms, while also helping you understand how performance is affected by specific 
operations within a given algorithm. That brings us to a similar topic with respect to 
refining existing machine learning algorithms: reactive search optimization.

Reactive Search Optimization (RSO)
RSO is a relatively new innovation in the field of optimization. It produces interesting 
implications that are worth mentioning for more advanced readers. The purpose of RSO 
lends itself to being of particular use to those who intend on creating machine learning 
platforms and tools that are intended for users who aren’t as technically adept as the 
typical machine learning engineer. Intelligent optimization refers to a more specific area 
of research within RSO, but is nonetheless relevant. In this paradigm, we evaluate the 
effectiveness of different learning schemes. There are broadly three, which we will refer to 
as online, offline, and a combination of the two with varying proportions. This is the idea 
of implementing algorithms in different environments such that they have different search 
histories, which ultimately affect the action of the epoch that is currently in session.
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Reactive Prohibitions
Prohibition-based techniques and intelligent schemes, in contrast to basic heuristics such 
as local search, are what provide the intellectual motivation for tabu search. Tabu search 
methods mainly gained their initial traction in the 1980s, and it has proved a large area of 
research given the fertile ground it occupies. Tabu search (TS) is particularly noteworthy 
when comparing it against local search methods because of the use of prior information 
gleaned from the data set, and how that influences the new iterations’ outcomes. Assume 
that we have a feasible search space that is composed of binary strings with a length 
L

L
: , ={ }0 1,  X is the current configuration, and N(X) is the previous neighborhood. The 

following equation is related to tabu search that is prohibition-based

X N Xt
A

t+ = ( )( )1 BestNeighbor ,

N X N X X XA
t t t+ + +( ) = ( ) ¼( )1 1 0 1ALLOW , , ,

where the ALLOW function selects a subset of N X t+( )( )1  such that it is dependent on the 

entire search trajectory X X t0 1, ,¼ + .

Tabu search algorithms are classified in many ways, but the initial distinguishing 
factor I’ll elaborate on is deterministic versus stochastic systems within TS algorithms. 
The most basic form of tabu search is denoted as strict tabu search. In this algorithm, we 
observe N(X) to have the following value:

N X X N X s t X X XA
t t t+ + +( ) = Î ( ) Ï ¼{ }{ }1 1 0 1. . , ,

When introducing a prohibition parameter, T, that determines how long a move will 
remain prohibited after the execution of its inverse, we can obtain two algorithms that are 
different from strict tabu search. A neighbor is allowed if and only if it is obtained from 
the current point by applying a direction to the search such that its inverse has not been 
used during the last T iterations, such that

N X X X s t t TA
t t+ -( ) = = ( ) < -( ){ }1 1m m . . LastUsed ,

where LastUsed() is the last usage time of move μ. If T changes with the iteration 
counter, the general dynamical system that generates the search trajectory comprises an 
additional evolution equation for T such that

T T X Xt t t= ¼-React ,( , , ,1 0
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N X X X s t t T XA
t t t+ - +( ) = = ( ) < -( ){ }

= -

1 1 1m m . . ,LastUsed

Best Neighborr N XA
t( )( )}

For basic moves acting on binary strings, m m= -1.

For stochastic models, we can substitute prohibition rules with probabilistic 
generation-acceptance rules with large probability for allowed moves, and small 
for prohibited ones. Stochasticity can increase the robust nature of TS algorithms. 
Stochasticity can limit or remove the benefit of memory-induced activity, as is the main 
draw to tabu search. Robust tabu search features a prohibition parameter that is randomly 
changed between an upper and lower bound during the search. In fixed tabu search, 
stochasticity can be added by randomly breaking ties, or the cost function decrease is 
obtained by more than one candidate of the Best-Neighbor() function. This same effect is 
observed when implementing stochasticity in reactive tabu search.

Fixed Tabu Search
Let us assume we have a search space X such that X b b b=[ ]1 2 3,  with a cost function 

f b b b b b b b b b1 2 3 1 2 3 1 2 32 3 7, ,[ ]( ) = + + = , where b is a 3-bit string. The feasible points will be 
the edges of the 3-dimensional cube shown in Figure 8-8. The neighborhood of a given point 
is the set of points that are connected with edges. The point X^0 = [0,0,0] with f(X^0) = 0 is a 
local minimizer due to the fact that other moves produce a higher cost.

Figure 8-8. A feature space with error function, E, and f value = [x,y,z], using tabu search
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We will define two parameters that will be of use to testing the efficiency of a given 
tabu search epoch, denoted as the Hamming distance and the minimum repetition 
interval. The Hamming distance describes the distance between the starting point and the 
most successful point along the search trajectory, and the minimum repetition interval 
describes the amount of times a similar move was visited along a given search trajectory. 
These parameters’ equations are given by the following:

H X X Tt t+( ) = £ +1 1, ,t t ,

X X R Tt R t+ = Þ ³ +( )2 1

Moving forward, we should direct our attention to avoiding attractors of the search 
trajectory, where we define attractors as local minima generated by deterministic local 
search. If the cost function is lower bounded, and starts from an arbitrary point, it will 
terminate at local minimizer. We also define what is known as an attraction basin. An 
attraction basin is composed of all points such that a deterministic local search trajectory 
starting from them terminates at a specific local minimizer. Deterministic search 
trajectories often suffer from being biased towards attraction basins and as such can yield 
a result that is not a global minimizer. To solve this, a given search point is kept close 
to a local minimizer that was found in the beginning of the search trajectory. After this, 
the search trajectory can search for better attraction basins with respect to reducing the 
cost function. As always, there are limitations that we must be conscious of. With tabu 
search, the difficulties that are most frequently encountered are the determination of 
an appropriate prohibition parameter and making the technique robust enough that it 
doesn’t require tedious amounts of tuning from one context to another. This brings us to 
reactive tabu search, which has been proposed as a method of solving these problems.

Reactive Tabu Search (RTS)
Reactive tabu search (RTS) features a prohibition parameter that is determined through 
reactive mechanisms within the search trajectory. We initialize it with a value of 1 in the 
very beginning, but we add a deterministic aspect to how it changes. If there is evidence 
that diversification in the search trajectory is needed, T increases. Once this evidence 
isn’t apparent, T decreases. Sufficient evidence for diversification in the search path is 
reached when we repetitively visit previous points along the search trajectory, as they are 
stored in the “memory” of the algorithm. Also, to avoid instances in which the algorithm 
is very rigidly stuck in an attraction basin, RTS has an escape mechanism. This is initiated 
when too many search trajectory configurations have been repeated in a given period and 
features a stochastic reconfiguration of the current search path.

The objective function, f, ultimately is where the information for the direction of the 
search trajectory comes from. As such, the following algorithms directly fall under this 
paradigm.
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WalkSAT Algorithm
The WalkSAT algorithm can be understood as a more generalized version of the GSAT 
algorithm, which is a type of local search algorithm. In the algorithm, there are a set 
number of opportunities allowed for a given number of iterations to find a solution. 
During a given iteration, the algorithm chooses a variable between two criteria. After this 
point, the variable is put into the FLIP function where FLIP xi( ) = -( )1 xi . The WalkSAT 

gets its power from doing less calculation than GSAT because it is considering fewer 
parameters at a given time. In addition to this, by a product of the clauses which 
determine variable picking, it thereby has the opportunity to solve a problem variable 
that could be preventing convergence upon the global optimum. Clause-weighting can 
also be incorporated into the WalkSAT algorithm, which gives new possibilities for 
parameter tuning and feedback loops produced upon, The following algorithm suggests 
weights as a method of encouraging more priority on solving the more difficult clauses. 
Difficult clauses are considered such after several configurations.

K-Nearest Neighbors (KNN)
KNN is considered to be instance-based learning, which features approximations of the 
function locally and all calculations happening after classification. It can also be used for 
regression, but often is described as a search method. Its main draws are the fact that it 
is relatively easy-to-understand and effective for cases in which there are irregularities in 
the pattern of data. These models, in the case of classification, are considered memory-
based where we define k neighboring points that we want to consider. We use a Euclidean 
norm on the standardized data to determine the distance between a given point and its k 
neighbors. This equation is given as

d x y x y
i

N

i,( ) = -( )
=
å

1

2

where I = 1,2,…,N, N = the total number of observations, x
i
 = ith observation, and y = the 

specific point we want to classify.
As K increases, typically we notice that the definition between classes becomes less 

rigid, leading to generally more robust models. Insofar as it relates to feature selection, 
KNN can be used as a data preprocessing technique often used alongside other search 
techniques for more refined feature selection. An example is given from a 2007 paper by 
Tahir, Bouridane, and Kurugollu in which they create a hybrid algorithm using a variant 
of tabu search and KNNs. The algorithm performs feature weighting and selection, 
yielding more accurate classification results. The pipeline occurs such that the features 
are selected and weighted via tabu search and classified via KNN. If we don’t perform 
feature selection with tabu search, or feature selection at all, more noise is incorporated 
into the decision-making process for the KNN algorithm. As the case generally is, 
performing feature selection here helps the algorithm make more precise choices when 
classifying each observation.
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Summary
This chapter was a kind of meta-heuristic on the entirety of the granular details discussed 
up until this point. Foremost, experimental design, feature selection, and A/B testing 
will be crucial to any data scientist’s profession. The ability to properly structure the 
experiments by which you conduct models, improve upon their performance by 
modifying the inputs, and then quantitatively validate the results of a model are crucial. 
Chapter 9 discussed hardware solutions for those who are interested in creating a build 
for personal or professional use.

http://dx.doi.org/10.1007/978-1-4842-2734-3_9
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CHAPTER 9

Hardware and Software 
Suggestions

To apply the techniques explored in this book in a professional setting, hardware 
upgrades may become a consideration. In some cases, it might even be necessary to build 
a computer from the ground up. There are very few out-of-the-box ready builds, and the 
ones that do exist can cost a staggering amount of money. With that in mind, this chapter 
is intended to give readers a basic overview of the hardware components they should be 
most mindful of as well as provide general suggestions on hardware to purchase.

Processing Data with Standard Hardware
You may face many difficulties when operating on a relatively “vanilla” machine. When 
working on machine learning and deep learning problems with a large data set, it is 
generally recommended that you run most of your operations on subsets of the data and 
train in such a manner that the iterations times the size of the subset equals the size of the 
original data set. Although this merely provides an approximation of performance, it may 
be able to run your solution without crashing the interpreter due to lack of RAM.

It is also highly suggested that individuals with sufficient funds use Amazon Web 
Services (AWS). Professionally, Amazon is the go-to solution for cloud services and may 
even allow you to pick up a valuable skill set that many employers are eager to have. In 
short, you can pay to run instances of all the hardware you need in a cloud environment. 
Although for deployment purposes doing so can be extremely costly, for proof of 
concept or research using a cloud service like Amazon AWS can be a cost-efficient and 
easy solution to solving your problems for deep learning. If you need to implementing 
solutions as part of deploying an algorithm for a business or service, however, read  
on—the advice given in this chapter is a good starting point.

Solid State Drives and Hard Drive Disks (HDD)
A hard drive disk (HDD) is a storage device used to retain information even while the 
machine is not online. The main characteristics of an HDD are the amount of data it 
can store and the performance it provides. Since the mid 2000s, as I mentioned early 
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in the book, the price of storage has dropped substantially, promoting a resurgence in 
interest in the science of machine learning and deep learning. This development makes it 
possible to store and collect substantial amounts of training data and/or trained models 
that you can update later moments or use for related tasks. Users should become familiar 
with the cases they want to tackle most often.

Graphics Processing Unit (GPU)
GPUs are one of the most frequently referenced pieces of hardware with respect 
to distinguishing machines that can deliver high-performance deep learning from 
machines that aren’t specialized for deep learning). For deep learning, GPUs accelerate 
the processing of computations and are an integral part of the deep learning build. 
When compared with Central Processing Unit (CPU) computations, GPUs easily 
outperform CPUs and are where the bulk of computation occurs. You can build a unit 
with multiple GPUs, but be aware of the challenge of efficiently utilizing computing 
power when you do this. If you’re not familiar with parallel computing, achieving such 
a build can be time-consuming to learn and implement correctly and invites spending 
an unknown amount of time, not to mention the time involved in designing and 
debugging software before algorithms/solutions can be effectively deployed.

There are packages in different languages to parallelize your code and improve 
performance. In R, I suggest you consider the parallel package, especially for performing 
the same task on a large amount of data. Rather than inputting the whole data set into 
an algorithm, it can be broken up such that the same task is performed in parallel with 
chunks of the data set, thereby making it more efficient. Where applicable, you should 
also implement the lapply function. This function takes a parameter and feeds it into a 
function, making performing complex operations much more computationally efficient 
than using nested loops.

My recommendations for GPUs (as of early 2017) focus on the following Nvidia models:

•	 Titan X

•	 GTX 680

•	 GTX 980

As of early 2017, Nvidia is one of the few companies devoting attention to developing 
GPUs specifically for the purpose of deep learning. (Note that AMD is partnering with 
Google to create deep learning hardware to be released sometime in 2017.) While this 
is likely not to be cost-effective for the average practitioner, for those in a professional 
context or with sufficient budgets, I suggest you review the specifications and 
performance reviews for AMD’s FirePro S9300 x2 GPU when it releases.

Choosing a GPU depends on the type of problem you want to solve and how 
much memory you expect to consume in the process. Those using CNNs should expect 
to consume a great deal of memory, particularly in the process of training a given 
model. The physical storage for images and other data with deep learning is another 
consideration to keep in mind. Though both solid storage and virtual storage have 
dropped in price dramatically, you should set aside time to properly estimate the storage 
necessary.
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Central Processing Unit (CPU)
The CPU instructs the computer on what operations should happen and where these 
operations should happen, in addition to performing very basic arithmetic, logical, and 
input/output functions. The CPU also works closely with the GPU to initiate function 
calls and initiate transfers of computations to the GPU. For deep learning–specific work, 
the number of CPU cores as well as CPU cache size are important. Most deep learning 
libraries rely on using a single CPU thread, and you can often perform just fine with 
one thread per GPU. However, using more threads per GPU will likely lead to better 
performance—take this fact in context with the task you intend to perform. For image-
classification tasks, such the classic MNIST digit-classification task, I have found that 
using g2.2xlarge instances from AWS is more than sufficient, if I have difficulty using my 
local machine—it provides 1 GPU with 15 GB of RAM and 60 GB of SSD storage.

With respect to CPU cache size, there are several cache types with varying speeds.  
L1 and L2 tend to be quick, and L3 and L4 are slow. The purpose of the CPU cache is to 
help speed up computation via matching a key pair value. Most data sets encountered in 
a practical context are too large to fit into a CPU cache, so new data will be read in from 
the RAM on a given computer for each mini-batch. In the case of deep learning, most of 
the computation takes place in the GPU, so you needn’t worry about buying CPUs that 
can handle this load. However, due to CPU cache misses, you may often see that the 
machine underperforms and you have latency issues. That leads to the core consideration 
with cache misses: RAM and the need for more of it so often in machine learning and 
deep learning.

Random Access Memory (RAM)
RAM stores frequently used program instructions such that the speed of programs 
increases because it stores data that will be read or written irrespective of its location 
within the RAM. As for the size of RAM you need, it should be comparable to the size 
of the GPU you’re using. Using less RAM than the size of the GPU is likely to lead to 
latency issues that can cause problems particularly when training different networks 
such as CNNs. Using more RAM rather than less allows you to perform preprocessing 
and feature engineering much more easily than otherwise. It’s easy to say, “Buy as much 
RAM as possible,” but of course that’s not always possible. However, you should consider 
investing a significant portion of available capital in this aspect.

Motherboard
The motherboard is the main circuit board, found in a variety of products besides 
personal computers. Its primary purpose is to facilitate communication between various 
components within a computer, and it holds the connectors between these components. 
Make sure the motherboard has enough PCIe ports to support the number of GPUs 
that will be installed in a given computer, as well as support all the other hardware 
components being chosen.
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Power Supply Unit (PSU)
Power supply units convert alternating current electricity to regulated direct current 
power so that it can be used by the components within the computer. With regard to 
PSUs used for deep learning, be mindful to buy one that can service the number of GPUs 
you use if you use more than one. Deep learning can often require intensive periods of 
training, and the costs of running these instances should be minimized. The required 
watts for a given deep learning machine can be approximated by summing the watts of 
the GPU and CPUs while adding roughly 200 watts for the other components within the 
computer and variances in power consumption.

Optimizing Machine Learning Software
The major purpose of this chapter is to allow the reader to find where to focus their 
attention with respect to improving their machine. The end goal is to improve the 
performance of the software being tested and deployed, but part of that involves 
optimizing the software directly. To that end, before all other steps, I advise you to try 
to improve the algorithm you’re using or find a better one when implementing a given 
solution. Optimal choice of algorithm and finding the most optimal implementation 
of said algorithm can be quite time-consuming. It might involve reading through a 
considerable amount of documentation, looking through the code for various functions 
in depth, and possibly doing experimentation. Although this book is intended for those 
who are relatively experienced in R and who are new to deep learning/machine learning, 
after reading through this text you should feel confident enough to begin creating your 
own implementations of various machine learning algorithms. Although time-intensive, 
doing so can teach you a great deal about the efficiency of different algorithms and their 
implementations.

A common debate currently revolves around which language to use. R is a very 
accessible language and great for proof of concept, particularly because its syntax allows 
for code to be written and tested quickly. Yet it can often prove cumbersome when 
trying to deploy the algorithms for anything that requires real-time applications—and 
particularly when trying to embed the software into other applications. If you intend on 
working in a professional context, keep that in mind when devising final solutions for 
anything. Typically, those looking to write for speed often do so in C++. This book doesn’t 
cover C++, of course, or any of the packages in C++ for that matter, but readers should 
explore the myriad of libraries available in C++ for machine learning and deep learning.

Summary
This chapter should give readers a basic understanding of some of the most common 
concerns they should have when making a dedicated build for machine learning—or 
when trying to modify their existing hardware to better service their deep learning needs.

Chapter 10 dives into practical examples more heavily using machine learning and 
deep learning solutions.

http://dx.doi.org/10.1007/978-1-4842-2734-3_10
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CHAPTER 10

Machine Learning Example 
Problems

In this chapter we’ll start applying the techniques discussed so far to practical 
problems you may potentially face. The data sets provided will either be generated 
from random data or will be from https://github.com/TawehBeysolowII/
AnIntroductionToDeepLearning. Note that you can also consult that URL for all code and 
data sets provided in the examples given in prior chapters.

In this chapter we will be exclusively examining machine learning problems. Though 
I can’t cover every possible field and problem type, the focus on the examples here will to 
be address common scenarios users are likely to encounter.

I encourage you to view these final example chapters as tutorials for how to go from a 
data set (raw or processed) to a solution. Although these examples are feasible solutions, 
the most important aspect is applying the experimental design, feature selection, and 
model evaluation methodologies we’ve already discussed to solve problems effectively.

Problem 1: Asset Price Prediction
Quantitative finance is a field that continues to incorporate data science and machine 
learning techniques into its methods, specifically in the process of automated trading and 
market research. Although quantitative finance in and of itself is a field with a rich diversity 
and its own techniques, there are many broad analytic and mathematical concepts we can 
apply. For this example, we will be using the quantmod package to download financial data, 
and I’ll walk you through how to predict asset prices. I’ll also briefly explain how to create 
a trading strategy—specifically, a statistical arbitrage strategy. As always, backtesting these 
results is highly recommended prior to anyone applying these techniques. The purpose 
of this chapter is to provide an academic understanding of machine learning—it’s not 
intended as a tutorial in quantitative portfolio management!

Let’s assume you’re a quantitative analyst at an asset management firm and you’re 
tasked with reasonably predicting the returns of an asset that is in the S&P 500. Your 
managing director believes that there are ten other stocks that would be helpful in 

https://github.com/TawehBeysolowII/AnIntroductionToDeepLearning
https://github.com/TawehBeysolowII/AnIntroductionToDeepLearning
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modeling the performance of this particular asset and that you should likely somehow 
use these in your analysis. The director gives no prescriptions particularly on what to use, 
besides suggesting using a machine learning approach to solving this problem.

Let’s begin by defining the problem.

Problem Type: Supervised Learning—Regression
Any problem in which we’re trying to predict discrete or continuous values is known as 
a regression problem. Because we have the answers, and we’re trying to compare our 
proposed answers against the actual answers, this is a supervised learning problem. 
Specifically, we’ll be trying to predict the returns of one asset, y, based on the returns of 
other assets, x. Let’s start building the pipeline to solve this problem.

Typically, using the Yahoo! or Google Finance API is recommended for these tasks. 
For those particularly focused on the application of machine learning to quantitative 
finance, note that Yahoo! Finance’s data has survivorship bias built in—that is, any 
companies that are now defunct cannot have their data accessed anymore. So, companies 
that were delisted for any reason are no longer stored in the database. This creates a 
problem because all strategies using this data won’t reflect the worst possible downside 
had someone, for example, traded securities such as Bear Sterns of Lehman Brothers 
during the financial crisis. However, databases that hold data of companies that went 
bankrupt or are no longer listed can be found (Norgate Data is one example).

We’ll begin by loading data using the Google Finance API, but will do so using the 
quantmod package. This package is recommended for any work requiring access to stock 
data, such as getting daily, monthly, or quarterly prices for various financial instruments, 
in addition to getting data on financial statements from publically listed companies.

Let’s start walking through the code:

#Clear the workspace (1)
rm(list = ls())

#Upload the necessary packages (2)
require(quantmod)
require(MASS)
require(LiblineaR)
require(rpart)
require(mlbench)
require(caret)
require(lmridge)
require(e1071)
require(Metrics)
require(h2o)
require(class)
#Please access github to see the rest of the required packages!
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#Summary Statistics Function
#We will use this later to evaluate our model performance (3)
summaryStatistics <- function(array){
  Mean <- mean(array)
  Std <- sd(array)
  Min <- min(array)
  Max <- max(array)
  Range <- Max - Min
   output <- data.frame("Mean" = Mean, "Std Dev" = Std, "Min" =  Min, 
"Max" = Max, "Range" = Range)

  return(output)
}

In the preceding code, as always when using R, it’s important to clear the workspace 
(1) when working with a new experiment. Then we load the required packages (2). The 
next function defined gives summary statistics on the arrays that we’re analyzing (3). In 
this example, we’ll be looking exclusively at MSE. This is to provide a simple example of 
how to evaluate machine learning models.

There are two approaches I often take:

•	 Evaluate several models in default mode and then perform 
parameter tuning on the best model.

•	 Perform parameter tuning one parameter at a time and then 
evaluate the tuned models against one another.

Here, I’ll be performing the latter, though to a less intensive degree for the purpose of 
simplicity and explanation.

Description of the Experiment
The general pipeline we will create to solve this problem can be described as follows:

Data Ingestion → Feature Selection → Model Training and Evaluation → Model 
Selection

Specifically, in this problem we will try to predict the returns of Ford, ticker F, based 
on the returns of stocks we suspect accurately describe these returns (a mix of market 
indices and other stocks). The selection of our stock portfolio could be a study in and 
of itself, but in this instance we chose stocks that are related to the auto market (macro 
indicators and those tied to the energy industry). The assumption here is that stocks 
that track the performance of Ford are likely to be companies within the same industry, 
in related industries that service the auto market in some way, or describe greater 
implications about the economy at large.

Be aware that beyond the mathematics necessary to properly understand how to 
create machine learning models, it’s necessary to provide these models with useful data. 
If we were to use features that are completely irrelevant to the problem being solved, we 
would be very unlikely to receive any useful results as output from a fitted model. As such, 
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these assumptions we made to create our data set will help yield the better results prior to 
any fine tuning we perform on our algorithms:

#Loading Data From Yahoo Finance (4)
stocks <- c("F", "SPY", "DJIA", "HAL", "MSFT", "SWN", "SJM", "SLG", "STJ")
stockData  <- list()
for(i in stocks){
  stockData[[i]] <- getSymbols(i, src = 'google', auto.assign = FALSE, from 
= "2013-01-01", to = "2017-01-01")
}

#Creating Matrix of close prices
df  <- matrix(nrow = nrow(stockData[[1]]), ncol = length(stockData))
for (i in 1:length(stockData)){
  df[,i]  <- stockData[[i]][,4]
}
#Calculating Returns
return_df  <- matrix(nrow = nrow(df), ncol = ncol(df))
for (j in 1:ncol(return_df)){
  for(i in 1:nrow(return_df) - 1){
    return_df[i,j]  <- (df[i+1, j]/df[i,j]) - 1
  }
}

In the preceding code, we pull the data from Yahoo! Finance (4). Unless this data is 
saved after initial download, you should have an active Internet connection—otherwise 
this part of the code won’t execute properly. When calculating the returns of a given 
stock, you can think of returns as a derivative, but a simpler formula for a return based 
price is the following:

Adjusted CloseR
P

Px
x

x
t

t

t

=








−

+1 1

(A)

Where x = stock x, y = stock y, t = time period (1,2, … n),

n = number of observations, and Pxt
 = Price of Stock x in period t

For the purpose of this experiment, and likewise in many such cases in quantitative 
finance, we calculate returns based on adjusted close prices (equation A). We call these 
adjusted close prices based on their reflecting any changes in the underlying stock price 
over time due to dividends, stock splits, or other financial adjustments that have nothing 
to do with the performance of the stock or market conditions. Here, we will be looking at 
daily returns. The selection of the time frequency is entirely up to the user and depends 
on the strategy being assessed. Generally speaking, high-frequency trading occurs 
multiple times within a day, and low-frequency trading occurs in increments significantly 
longer than a day.

We organize the data such that each column represents the returns of a given stock and 
each row represents the return on a given day. Figure 10-1 shows the head of the data set.
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Stock returns often work well with machine learning algorithms because they are all 
scaled similarly and represent a measure that is relative to all the observations within a 
given stock, as well as the universe of stocks available for analysis.

Feature Selection
When handling time series data, we often encounter multicollinearity. Because of this, 
PCA is a fair method to use for feature selection. We do so because there are likely 
features that are unnecessary to evaluate, and therefore noise need not be valuated, 
in addition to the fact that linear correlations among variables are high. So, evaluating 
features by their variance contributed is reasonable. The following shows the code that 
performs PCA:

#Feature Selection
#Removing last row since it is an NA VALUE
return_df  <- return_df[-nrow(return_df), ]
#Making DataFrame with all values except label IE all columns except for 
Ford since we are trying to predict this
#Determing Which Variables Are Unnecessary
pca_df  <- return_df[, -1]
pca  <- prcomp(scale(pca_df))
cor(return_df[, -1])
summary(pca)

When executing the preceding code, we receive the results shown in Figures 10-2 
and 10-3.

Figure 10-1. Head of stock return data set

Figure 10-2. Correlation matrix for entire data set
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In row 2 of Figure 10-3, you can see the proportion of the variance each principal 
component contributes to the data set. It must be stated for clarity that principal 
components do not represent the features within the data set. With that being said, we 
can consider principal component 1 to be a combination of features 1 through 8, PC 2 
to be a combination of features 2 through 8, and so on. The general rule of thumb is to 
consider as insignificant principal components that contribute 1% or less to the total 
variance. When translating this to the data set, we would remove feature 8 within the 
data set. This same pattern of analysis should be extrapolated, but only when linear 
correlations between features are observed. Back in Figure 10-1, you can see generally 
moderate to strong linear correlations among the features, indicating that PCA is indeed 
an appropriate choice for features.

Model Evaluation
Now that we’ve preprocessed the data, let’s consider our choices for algorithms. In this 
example, we’ll evaluate a couple of different choices and evaluate the MSE on all of them. 
The number of models to choose is entirely up to you, but for this practical example 
I’ll choose two. Furthermore, should you choose to evaluate statistics other than MSE, 
such as R Squared, it is reasonable to evaluate these measures relative to the goal of 
the experiment. That said, MSE should be and is the primary objective to minimize in 
regression models, and that should be the primary concern above all other evaluation 
methods.

Ridge Regression
Let’s choose the first model: ridge regression. Here, we’ll evaluate the MSE with respect to 
the value of the tuning parameter. In the following code, we begin by randomly sampling 
values from a normal distribution (5). These values will be used to pick the size of the 
tuning parameter, which we represent with K. The intuition behind this is that we’ll 
sort the values from lowest to greatest and then compare the performance of our ridge 
regression model’s MSEs by visualizing the error as we increase the tuning parameter:

#Ridge Regression
k <- sort(rnorm(100))(5)

Figure 10-3. Summary of principal components analysis (PCA) on data set
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In the following code, we begin by cross validating our results so that we are 
evaluating generalities of model performance rather than testing our algorithm on the 
exact same data set (6). We choose to use a training and test set of equal size, by splitting 
the data in half:

mse_ridge <- c()
for (j in 1:length(k)){ (6)
    valid_rows <- sample(1:(nrow(return_df)/2))
    valid_set <- new_returns[valid_rows, -1]
    valid_y <- new_returns[valid_rows, 1]
#Ridge Regression (7)
     ridgeReg <- lmridge(valid_y ~ valid_set[,1] + valid_set[,2] +  

valid_set[,3] + valid_set[,4]
                             + valid_set[,5] + valid_set[,6], data = 
as.data.frame(valid_set), type = type,  K = k[j])
    mse_ridge <- append(rstats1.lmridge(ridgeReg)$mse, mse_ridge)
}

We then move to fitting the data to the ridge regression model using the lmridge() 
function and then append the MSE to a vector entitled mse_ridge (7).

When executing the following code, we see the result shown in Figure 10-4:

#Plots of MSE and R2 as Tuning Parameter Grows
plot(k, mse_ridge, main = "MSE over Tuning Parameter Size", xlab = "K",  
ylab = "MSE", type = "l",
     col = "cadetblue")

When looking at the plot, we see that the model performs best when our tuning 
parameter K is closest to the upper and lower bounds of the range displayed. Specifically, 
we’ll choose to create a fitted model with a tuning parameter value of 1, as this K value 
yields a low MSE. When evaluating models it’s important—in interviews, experiments, 
and for personal evaluation—to use plots to see the performance of the model with 

Figure 10-4. MSE over tuning parameter size
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respect to some parameter value changing. This is useful for you as well as for other 
people who are using/evaluating your code. It will help to guide people through your 
thought process, and plots tend to be more engaging than looking at numerical outputs of 
code from a terminal.

Before we test our fitted model on data outside our validation set, let’s show how we 
would tune another algorithm: the support vector regression (SVR).

Support Vector Regression (SVR)
The main parameter to tune here is the kernel function, which determines the shape 
of the hyperplane and therefore the shape of the regression line. When we execute the 
following code, we get the plot shown in Figure 10-5:

#Kernel Selection
svr_mse <- c()
k <- c("linear", "polynomial", "sigmoid")
for (i in 1:length(k)){
  valid_rows <- sample(1:(nrow(return_df)/2))
  valid_set <- new_returns[valid_rows, -1]
  valid_y <- new_returns[valid_rows, 1]

   SVR <- svm(valid_y ~ valid_set[,1] + valid_set[,2] + valid_set[,3] + 
valid_set[,4]

             + valid_set[,5] + valid_set[,6], kernel = k[i])
  svr_y <- predict(SVR, data = valid_set)
  svr_mse <- append(mse(valid_y, svr_y), svr_mse)
}

#Plots of MSE and R2 as Tuning Parameter Grows
plot(svr_mse, main = "MSE over Tuning Parameter Size", xlab = "K",  
ylab = "MSE", type = "l",
       col = "cadetblue")

Figure 10-5. SVR MSE with respect to kernel selection
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When evaluating the output, we notice that following MSE values in Figure 10-5. The 
polynomial kernel yields the smallest MSE and therefore is our choice. Now, that we’ve 
trained both models, we’ll predict out of sample using our tuned models. In a practical 
setting, you should likely fit more than two models and evaluate the performance. 
Because this process is exhaustive, I’ve condensed this example to comparing two models 
for the sake of explanation. Regardless, let’s see the performance of our tuned models:

#Predicting out of Sample with Tuned Models
#Tuned Ridge Regression
ridgeReg <- lmridge(valid_y ~ valid_set[,1] + valid_set[,2] + valid_set[,3] 
+ valid_set[,4]
                    + valid_set[,5] + valid_set[,6], data = as.data.
frame(valid_set), type = type,  K = 1)

y_h <- predict(ridgeReg, as.data.frame(new_returns[-valid_rows, -1]))
mse_ridge <- mse(new_returns[-valid_rows, 1], y_h)

#Tuned Support Vector Regression
svr <-   SVR <- svm(valid_y ~ valid_set[,1] + valid_set[,2] + valid_set[,3] 
+ valid_set[,4]
                    + valid_set[,5] + valid_set[,6], kernel = "polynomial")
svr_y <- predict(svr, data = new_returns[-valid_rows, -1])
svr_mse <- mse(new_returns[-valid_rows, 1], svr_y)

#Tail of Predicted Value DataFrames
svr_pred <- cbind(new_returns[-valid_rows, 1], svr_y)
colnames(svr_pred) <- c("Actual", "Predicted")
tail(svr_pred)
ridge_pred <- cbind(new_returns[-valid_rows, 1], y_h)
colnames(ridge_pred) <- c("Actual", "Predicted")
tail(ridge_pred)

The preceding code uses the regression models we trained, except we set the 
parameter values based on which values yielded the lowest MSE. Although we fit the 
model to the training data, we’re predicting on the test data. This is denoted by the fact 
that we’re indexing from the return data frame using all the observations that we did not 
train the model against. When predicting on the test data set, the Figures 10-6 and 10-7 
show the actual versus predicted stock values for each algorithm.
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When evaluating the MSE of these algorithms, we receive the following results:

MSE for Support Vector Regression: 0.0002967161

MSE for Ridge Regression: 0.0002632815

Based on these results, it’s reasonable to say that we should choose the ridge 
regression over the SVR based on the better MSE. You should feel free to work through 
the example given and use different feature selection algorithms, in addition to different 
algorithms altogether, when evaluating a solution. The purpose of this section, again, is 
to provide insight into how I generally approach these problems so that you may begin to 
develop your own methodology. Although there are general guidelines to model selection 
and tuning, everyone is free to perform this in their own way.

Let’s now view a classification problem.

Problem 2: Speed Dating
In speed dating, participants meet many people, each for a few minutes, and then 
decide who they would like to see again. The data set we will be working with contains 
information on speed dating experiments conducted on graduate and professional 
students. Each person in the experiment met with 10–20 randomly selected people of the 
opposite sex (there were only heterosexual pairings) for four minutes each. After each 
speed date, each participant filled out a questionnaire about the other person. Our goal 
is to build a model to predict which pairs of daters want to meet each other again (that is, 
have a second date).

Figure 10-7. Tail of actual versus predicted data frame (ridge regression)

Figure 10-6. Tail of actual versus predicted data frame (SVR)
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Problem Type: Classification
Any problem in which we’re trying to determine binary or finite multinomial outcomes 
can be thought of as a classification problem. In this case, this will be a supervised 
problem, because we know the labels of the data beforehand, but we need to calculate 
them via a deterministic rule specific to this data set. A second date is only planned if 
both people in a given matching decide they would like to see the other person again. So, 
we’ll create this column in the preprocessing stage of the data set:

#Upload Necessary Packages
require(ggplot2)
require(lattice)
require(nnet)
require(pROC)
require(ROCR)

#Clear the workspace
rm(list = ls())

#Upload the necessary data
data  <- read.csv("/Users/tawehbeysolow/Desktop/projectportfolio/
SpeedDating.csv", header = TRUE, stringsAsFactors = TRUE)

#Creating response label
second_date  <- matrix(nrow = nrow(data), ncol = 1)

for (i in 1:nrow(data)){
  if (data[i,1] + data[i,2] == 2){
    second_date[i]  <- 1
  } else {
    second_date[i]  <- 0
  }
}

As always, we begin the experiment by loading the necessary packages and clearing 
the workspace. Then we load the data and create a response label denoted second_date.

Now that we’ve gone through some initial preprocessing, let’s describe and explore 
our data set. The features in this data set are as follows, from the first column through the 
last column:

•	 Second_Date: The response variable, y, for the data set which is 
binary. 1 = Yes (you would like to see the date again), 0 = No  
(you would not like to see the date again).

•	 Decision: The decision of the individual person, segregated by 
sex, as to whether they would like to go on a second date. 1 = Yes 
(you would like to see the date again), 0 = No (you would not like 
to see the date again).
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•	 Like: Overall, how much do you like this person? (1 = not at all, 10 
= like a lot).

•	 PartnerYes: How probable do you think it is that this person will 
say ‘yes’ for you? (1 = not probable, 10 = extremely probable).

•	 Age: Age.

•	 Race: Caucasian, Asian, Black, Latino, or Other.

•	 Attractive: Rate attractiveness of partner on a scale of 1–10  
(1 = awful, 10 = great).

•	 Sincere: Rate sincerity of partner on a sale of 1–10 (1 = awful,  
10 = great).

•	 Fun: Rate how fun partner is on a scale of 1–10 (1 = awful,  
10 = great).

•	 Ambitious: Rate ambition of partner on a scale of 1–10 (1 = awful, 
10 = great).

•	 Shared Interest: Rate the extent to which you share interests/
hobbies with partner on a scale of 1–10 (1 = awful, 10 = great).

Preprocessing: Data Cleaning and Imputation
Note that in this data set there are NA observations. As mentioned, we have multiple tools 
to deal with this problem, but it’s important for us to algorithmically find a way to handle 
this. We will tackle that prior to performing any feature transformation. The following 
code shows the process by which we handle NA data:

#Cleaning Data
#Finding NA Observations
lappend <- function (List, ...){
  List <- c(List, list(...))
  return(List)
}
na_index <- list()
for (i in 1:ncol(data)){
  na_index <- lappend(na_index, which(is.na(data[,i])))
}

First, we create a function that will let us append vectors to a list such that for each 
column, we have a vector of rows that indicate where the NA observations are. Given the 
nature of the data set, it’s logical to impute the values using a method most reasonable 
given the data within that column/feature. Note that columns Second_Date, DecisionM, 
DecisionF, RaceM, and RaceF don’t have any missing data. We’re going to tackle the 
features that do have missing data.
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We’ll perform our data imputation using the expectation maximization (EM) 
algorithm described in Chapter 3. This is given in the amelia package, which can be 
installed from the R terminal. Before that, though, we must prepare our data slightly:

#Imputing NA Values where they are missing using EM Algorithm
#Step 1: Label Encoding Factor Variables to prepare for input to EM Algorithm
data$RaceM <- as.numeric(data$RaceM)
data$RaceF <- as.numeric(data$RaceF)

#Step 2: Inputting data to EM Algorithm
data <-  amelia(x = data, m = 1,  boot.type = "none")$imputations$imp1

#Proof of EM Imputation
na_index <- list()
for (i in 1:ncol(data)){
  na_index <- lappend(na_index, which(is.na(data[,i])))
}
na_index <- matrix(na_index, ncol = length(na_index), nrow = 1)
print(na_index)

 #Scaling Age Features using Gaussian Normalization
data$AgeM <- scale(data$AgeM)
data$AgeF <- scale(data$AgeF)

The EM algorithm can’t handle factors (categorical variables). That means we must 
numerically encode these factors prior to their being inputted to the algorithm. After this, 
we execute the amelia function, which executes what we would like. Moving forward, we 
provide proof that there is no longer any NA data within this data set by indexing any NA 
values and then printing this output, yielding the result shown in Figure 10-8.

We’ve successfully removed all the NA observations and will perform the last bit of 
preprocessing before we move on to feature selection. Let’s look at the distribution of 
ages with respect to both male and female. We code this as the following and receive the 
subsequent result:

#Scaling Age Features using Gaussian Normalization
summaryStatistics(data$AgeM)

Mean  Std.Dev Min Max Range
1 26.60727 3.509664  18  42    24

Figure 10-8. Displaying counts of NA values in cleaned data set

http://dx.doi.org/10.1007/978-1-4842-2734-3_3
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summaryStatistics(data$AgeF)

Mean  Std.Dev Min Max Range
1 26.24317 3.977411  19  55    36

#Making Histograms of Data
hist(data$AgeM, main = "Distribution of Age in Males", xlab = "Age",  
ylab = "Frequency", col = "darkorange3")
hist(data$AgeF, main = "Distribution of Age in Females", xlab = "Age",  
ylab = "Frequency", col = "firebrick1")
data$AgeM <- scale(data$AgeM)
data$AgeF <- scale(data$AgeF)

When visualizing the distributions of the data using the hist() function, the code 
yields the results shown in Figures 10-9 and 10-10.

Figure 10-9. Histogram of male ages

Figure 10-10. Histogram of female ages
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The distributions of both female and male ages are positively skewed, meaning that 
the average is less than the median. However, note that there is significantly less variation 
in female ages in contrast to male ages. Although this also might serve as an insight 
we want to keep, you should glean the importance of displaying plots when exploring 
your data set and explaining what the information shows. This tends to be one of the 
most compelling ways to display information for people who aren’t nearly as technical. 
For those who often find themselves making presentations, effective use of plots is a 
must. Finally, we end our data cleaning and preprocessing by performing Gaussian 
normalization on the age variables so that their inputs don’t affect the accuracy of our 
classification models, because they are on different ranges than every other variable that 
isn’t a numerical label.

Now that all the necessary preprocessing has been performed, we can approach the 
task of feature selection.

Feature Selection
This data set doesn’t have an abnormally large number of observations, but 27 individual 
features likely makes for overkill and will unnecessarily weaken our machine learning 
algorithm’s predictive power. As such, it is reasonable for us to eliminate unnecessary 
features, though we should be mindful of this process not necessarily being as 
straightforward as it appears.

When looking at the correlation matrix (the matrix is too large to be displayed here), 
we notice that there are generally weak to moderate linear correlations. We will likely be 
unable to get effective results from any models that rely heavily upon linear assumptions. 
When relating that to feature selection, we are similarly unlikely to get good results from 
using PCA. So, I chose to use a random forest to denote feature importance based on how 
much they affect the classification of an observation:

#Feature Selection
corr <- cor(data)

#Converting all Columns to Numeric prior to Input
for (i in 1:ncol(data)){
  data[,i] <- as.integer(data[,i])
}

#Random Forest Feature Selection Based on Importance of Classification
data$second_date <- as.factor(data$second_date)
featImport <- random.forest.importance(second_date ~., data = data, 
importance.type = 1)
columns <- cutoff.k.percent(featImport, 0.4)
print(columns)
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When executing the preceding code, the following columns are above the 0.4 
threshold set for importance:

[1] "DecisionF"  "DecisionM"          "AttractiveM"    "FunF"    "LikeM"
[6] "LikeF"      "SharedInterestsF"   "AttractiveF"    "PartnerYesM"

These will be the features used in our training set, and we now can proceed to model 
training and evaluation.

Model Training and Evaluation
Now that we have a sufficiently reduced and transformed data set, it’s time to go about 
the process of model selection. Because the function that determines the classification 
is not linear, we should look at functions that can handle this type of data. In the next 
problem, we’ll use the following portfolio of algorithms:

•	 Logistic regression

•	 Bayesian classifier

•	 K-nearest neighbors

We’ll tune each algorithm’s parameters individually, evaluate the training set 
performance, and then predict out of sample. Once we’ve done this for all algorithms, 
we’ll evaluate the results side by side and then choose the most optimal algorithm.

Method 1: Logistic Regression
It’s suggested that when evaluating a portfolio classification algorithms you should always 
start with logistic regression. The reason is less because of the expectation for this to be 
the best algorithm, and more from the standpoint that this forms a baseline evaluation 
from which you can compare the different classification algorithms. In this experiment, 
we’ll evaluate the performance of our models with respect to their AUC score, which is 
the area under the (ROC) curve:

#Method 1: Logistic Regression
lambda <- seq(.01, 1, .01)
AUC <- c()
for (i in 1:length(lambda)){
  rows <- sample(1:nrow(processedData), nrow(processedData)/2)
   logReg <- glm(as.factor(second_date[rows]) ~., data = processedData[rows, ], 
family = binomial(link = "logit"), method = "glm.fit")

  y_h <- ifelse(logReg$fitted.values >= lambda[i], 1, 0)
  AUC <- append(roc(y_h, as.numeric(second_date[-rows]))$auc, AUC)
}
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We start by altering the threshold that determines whether we classify an observation 
as a 1 or 0 based on the lambda parameter. We iterate over the algorithm and append 
the AUC score based on this parameter to the AUC vector. After this loop of iterations, we 
should evaluate the performance visually by using a plot. When plotting the AUC score 
vector over the lambda value, we write the following code and observe the output shown 
in Figure 10-11:

#Summary Statistics and Various Plots
plot(lambda[-1], AUC, main = "AUC over Lambda Value \n(Logistic 
Regression)",
     xlab = "Lambda", ylab = "AUC", type = "l", col = "cadetblue")

We see that the AUC score is the highest when the lambda value is 0.15, so we’ll use 
that lambda value. This is an example of how I would suggest you tune machine learning 
algorithms’ parameters. Each parameter should be tuned individually so that you achieve 
a given objective, whether that is to minimize MSE or maximize AUC. In the logistic 
regression, the log odds threshold is really the only parameter we need to tune. We can 
view the performance of the tuned model over several iterations on the test set:

#Tuned Model
AUC <- c()
for (i in 1:length(lambda)){
  rows <- sample(1:nrow(processedData), nrow(processedData)/2)
   logReg <- glm(as.factor(second_date[rows]) ~., data = processedData[rows, ], 
family = binomial(link = "logit"), method = "glm.fit")

  y_h <- ifelse(logReg$fitted.values >= lambda[which(AUC == max(AUC))], 1, 0)
  AUC <- append(roc(y_h, as.numeric(second_date[-rows]))$auc, AUC)

}

Figure 10-11. AUC over lambda value
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#Summary Statistics and Various Plots
plot(AUC, main = "AUC over 100 Iterations \n(Naive Bayes Classifier)",
     xlab = "Iterations", ylab = "AUC", type = "l", col = "cadetblue")
hist(AUC, main = "Histogram for AUC \n(Naive Bayes Classifier)",
     xlab = "AUC Value", ylab = "Frequency", col = "firebrick3")

We follow the same intuition as when tuning the machine learning algorithms, by 
collecting the AUC. The nature of the logistic regression is such that it fits a model upon each 
iteration rather than choosing the most optimal regression solution, as some algorithms 
do. When plotting the AUC vector with respect to the iterations over time and plotting a 
histogram of the AUC vector, we observe the results shown in Figures 10-12 and 10-13.

Figure 10-12. Logistic regression AUC over 100 iterations

Figure 10-13. Logistic regression AUC histogram over 100 iterations
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Numerically, we can summarize this vector using the following function:

summaryStatistics(AUC)

Mean           Std.Dev       Min         Max         Range
1 0.5063276    0.04964798    0.3920711   0.6297832   0.2377121

We’ll keep these values in mind moving forward. When analyzing them as is, logistic 
regression is an insufficient classifier. Typically, we would like to see AUC scores be at 
least .70, because a score of .50 indicates that the model is correct only 50% of the time. 
Less than .50 is not optimal and arguably means that we should consider this classifier 
insufficient.

Method 3: K-Nearest Neighbors (KNN)
This is a fairly simple classification algorithm described in detail in Chapter 3. The 
purpose in picking this algorithm relative to another probabilistic algorithm is to create 
a diverse algorithm portfolio such that we can infer which types of algorithms are best 
suited to this task. As a note to the reader, the K-NN algorithm in the class package yields 
the classifications from the test data. To train your algorithm on the training data only, 
use the same data that you assign to the “train” argument:

#Method 3: K-Nearest Neighbor
#Tuning K Parameter (Number of Neighbors)
K <- seq(1, 40, 1)
AUC <- c()
for (i in 1:length(K)){
  rows <- sample(1:nrow(processedData), nrow(processedData)/2)
   y_h <- knn(train = processedData[rows, ], test = processedData[rows,],  
cl = second_date[rows], k = K[i], use.all = TRUE)

  AUC <- append(roc(y_h, as.numeric(second_date[rows]))$auc, AUC)
}

#Summary Statistics and Various Plots
plot(AUC, main = "AUC over K Value \n(K Nearest Neighbor)",  xlab = "K", 
ylab = "AUC", type = "l", col = "cadetblue")

When looking at the plot of the AUC over K-value chart, we see the results shown in 
Figure 10-14.

http://dx.doi.org/10.1007/978-1-4842-2734-3_3
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The AUC score in the training phase is generally impressive for all the values, but it’s 
reasonable to choose a lower K value than a large one to prevent overfitting. As such, we 
will choose a K of 3. Let’s observe the AUC scores on the test set with our tuned model, as 
shown in Figures 10-15 and 10-16.

Figure 10-14. KNN classifier AUC over 100 iterations

Figure 10-15. KNN AUC over 100 iterations on test set



Chapter 10 ■ MaChine Learning exaMpLe probLeMs

191

Figure 10-16. KNN AUC over 100 iterations on test set histogram

Numerically, we evaluate the AUC vector as the following:

summaryStatistics(AUC)

Mean          Std.Dev       Min         Max        Range
1 0.445006    0.01126862    0.4257075   0.4663915  0.04068396

Finally, we predict out of sample and observe the following results:

#Predicting out of Sample
y_h <- knn(train = processedData[rows, ], test = processedData[-rows, ],  
cl = second_date[-rows])
roc(y_h, as.numeric(second_date[-rows]))$auc

Area under the curve: 0.4638
We see a stark drop-off from the training set to the test set, in addition to the test set 

performance being objectively poor.

Method 2: Bayesian Classifier
I suspect that occurrence of a second date can be modeled by Bayesian estimators, so 
the first model we’ll begin with is the Bayesian classifier. In the following code, first we 
perform two-fold cross-validation on the data set so that we evaluate the performance 
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on the training set. In this particular model, very little tuning needs to occur, so we’ll just 
observe the performance of the model over 100 iterations:

#Method 1: Bayesian Classifier
AUC <- c()
for (i in 1:100){
  rows <- sample(1:nrow(processedData), 92)
   bayesClass <- naiveBayes(y = as.factor(second_date[rows]),  
x = processedData[rows, ], data = processedData)

  y_h <- predict(bayesClass, processedData[rows, ], type = c("class"))
  AUC <- append(roc(y_h, as.numeric(second_date[rows]))$auc, AUC)
}

#Summary Statistics and Various Plots
plot(AUC, main = "AUC over 100 Iterations \n(Naive Bayes Classifier)",
     xlab = "Iterations", ylab = "AUC", type = "l", col = "cadetblue")

hist(AUC, main = "Histogram for AUC \n(Naive Bayes Classifier)",
     xlab = "AUC Value", ylab = "Frequency", col = "cadetblue")

summaryStatistics(AUC)

When executing the code, we append the AUC score to the vector AUC, as shown in 
the preceding code that is looped over for 100 iterations. A line plot and histogram of this 
vector is shown in Figures 10-17 and 10-18.

Figure 10-17. Bayes classifier AUC performance over 100 iterations
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Figure 10-18. Bayes classifier AUC histogram over 100 iterations

We observe that the AUC scores have a slight right skew in their distribution and 
that the majority of the AUC scores are distributed within a relatively tight band of one 
another. When looking at the raw numerical data, we observe the following:

Mean          Std.Dev       Min         Max         Range
1 0.8251087   0.03142345    0.7567568   0.9027778   0.146021

These AUC scores yielded are more than generally acceptable for a model we choose, 
though we should still evaluate the performance of the model out of sample to be certain 
of how stable this process is:

#Predicting out of Sample
y_h <- predict(bayesClass, processedData[-rows, ], type = c("class"))
roc(y_h, as.numeric(second_date[-rows]))$auc

After executing the following code, we observe the following AUC score: area under 
the curve: 0.8219. This is acceptable within the distribution of the data yielded from the 
training set, with this AUC score trending towards the mean of the data.

When evaluating the solutions chosen, I strongly suggest choosing the Bayesian 
classifier given its stability from the training to the test set and superior AUC score above 
all other methods. In a practical setting, we would use the predictions out of the sample 
data to help influence our decision-making processes. In a professional context, this 
might include targeted marketing or recommendations to different users based on their 
dating profiles.
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Summary
You now have a brief but comprehensive view into how I would recommend applying 
the concepts I’ve explained in the previous chapters. You should also note that 
although I’ve had success in implementing machine learning algorithms using this 
general process/methodology, this isn’t the only way of training/tuning machine 
learning models. Nevertheless, I strongly emphasize the use of metrics and plotting 
the performance of the models with respect to these metrics when tuning different 
parameters. Chapter 11 will look at use examples of how to implement and use various 
deep learning models.

http://dx.doi.org/10.1007/978-1-4842-2734-3_11
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CHAPTER 11

Deep Learning and Other 
Example Problems

Now that I’ve sufficiently covered how to use and apply machine learning concepts, we 
should finally dive into applying and coding deep learning models using R. This can seem 
like a daunting task, but don’t be intimidated. If you have been able to code everything 
successfully in this book, it’s just a matter of adjusting to new packages. We will discuss a 
variety of deep learning examples, but will begin by dealing with simpler models and then 
eventually going on to more complex models. The purpose of these exercises is twofold:

•	 To show how to construct these models or access them from 
various packages

•	 To give examples of how they could be used in a practical concept

Autoencoders
Many of the other models described in the deep learning chapters of the book are 
relatively straightforward when it comes to how to use them, but I have found that the 
use of autoencoders does not become automatically clear. Therefore, I want to explore 
a use case in which the use of autoencoders is made abundantly clear in a practical 
context. Let’s consider a case in which we would like to use an autoencoder to improve 
the performance of a classification algorithm from Chapter 10. Specifically, I mean the 
classification problem we walked through, in which we were trying to determine whether 
a pair of individuals will go on a second date or not based on several features. Let’s begin 
by working with the Bayesian classifier:

#Bayes Classifier
#Bayes Classifier
AUC <- c()
for (i in 1:100){
  rows <- sample(1:nrow(processedData), 92)
  bayesClass <- naiveBayes(y = as.factor(second_date[rows]),  
x = processedData[rows, ], data = processedData)

http://dx.doi.org/10.1007/978-1-4842-2734-3_10
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  y_h <- predict(bayesClass, processedData[rows, ], type = c("class"))
  AUC <- append(roc(y_h, as.numeric(second_date[rows]))$auc, AUC)
}

summaryStatistics(AUC)
curve <- roc(y_h, as.numeric(second_date[rows]))
plot(curve, main = "Bayesian Classifier ROC")

When executing the preceding code, it yields what is shown in Figure 11-1.

Figure 11-1. ROC plot for Bayesian classifier

We observe AUC scores of this model when collecting sample statistics:

Mean       Std.Dev     Min        Max    Range
0.8210827  0.02375922  0.7571429  0.875  0.1178571

These are objectively good scores. However, for the purpose of this example, we’re 
going to use an autoencoder to help improve the performance of this model even further. 
This is where I introduce h2o. h2o produces a deep learning framework for R (along with 
other languages) that you will find useful for implementing many models. I encourage 
you to search through the documentation, because some implementations of deep 
learning models are hard to find (not to mention finding robust implementations).  
So let’s initialize h2o and use an autoencoder:

#Autoencoder
h2o.init()
training_data <- as.h2o(processedData, destination_frame = "train_data")
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autoencoder <- h2o.deeplearning(x = colnames(processedData),
 training_frame = training_data, autoencoder = TRUE, activation = "Tanh",
 hidden = c(6,5,6), epochs = 10)
autoencoder

h2o is similar to TensorFlow in that each session must be initialized. After this is 
initialized, whatever data passes through the models used must be transformed into 
an h2o-friendly format. We perform that transformation on our training data. Our 
autoencoder has three hidden layers, each of which has six, five, and six respective 
neurons within the given layers (denoted by the “hidden” argument within the  
h2o.deeplearning() function. We use tanh as our activation function. Upon executing 
the following code, we see what is shown in Figure 11-2.

Figure 11-2. Summary of autoencoder function

Note the MSE values. Because we’re trying to recreate inputs of a function, this 
becomes a regression task. So we evaluate the effectiveness of this algorithm using the 
traditional regression statistics (MSE and RSME). Let’s take a close look at the MSE 
yielded here and view the MSE with respect to the index of the data frame that holds the 
training data:

#Reconstruct Original Data Set
syntheticData <- h2o.anomaly(autoencoder, training_data, per_feature = FALSE)
errorRate <- as.data.frame(syntheticData)

#Plotting Error Rate of Feature Reconstruction
plot(sort(errorRate$Reconstruction.MSE), main = "Reconstruction Error Rate")

The h2o.anomaly() function uses the autoencoder to detect anomalies, which 
statistically we define as observations whose MSE during the reconstruction process are 
significantly higher than others. When executing the preceding code, we yield Figure 11-3.
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We can see that there is a steady increase of the MSE but also a sharp increase 
from the index level 225 through the end of the training data. We can reasonably state 
that the outliers are generally these last inputs. With this in mind, we’ll use a threshold 
determined by the MSE when segregating outliers from non-outliers into their respective 
subsets. We seek to train our Bayesian classifier by fitting our model to these subsets and 
seeing how the performance of the model, with respect to the AUC score, improves  
(or doesn’t):

#Removing Anomolies from Data
train_data <- processedData[errorRate$Reconstruction.MSE < 0.01, ]

#Bayes Classifier
AUC <- c()
for (i in 1:100){
  rows <- sample(1:nrow(processedData), 92)
   bayesClass1 <- naiveBayes(y = as.factor(second_date[rows]), x = 
processedData[rows, ], data = processedData)

  y_h <- predict(bayesClass1, processedData[rows, ], type = c("class"))
  AUC <- append(roc(y_h, as.numeric(second_date[rows]))$auc, AUC)
}

#Summary Statistics
summaryStatistics(AUC)

Figure 11-3. Plot of reconstruction error
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We follow the same general steps we followed in Chapter 10 with respect to model 
training, collecting samples of the AUC statistic over 100 trials. The only difference here 
is that we’re using a subset of the data with respect to the index values that fall below the 
MSE threshold. When looking at the summary statistics, we observe the following:

Mean       Std.Dev     Min   Max        Range
0.8274664  0.03076285  0.75  0.9117647  0.1617647

When comparing the distribution of our results to the original model, we observe 
a slightly higher mean, a higher max. However, we also observe a lower minimum. 
Therefore, the range and standard deviation of our results increase. Let’s evaluate our 
results when we only look at anomalies:

##########################################################################
#Using only Anomalies in Data Set
train_data <- processedData[errorRate$Reconstruction.MSE >= 0.01, ]

#Bayes Classifier
AUC <- c()
for (i in 1:100){
  rows <- sample(1:nrow(processedData), 92)
   bayesClass2 <- naiveBayes(y = as.factor(second_date[rows]),  
x = processedData[rows, ], data = processedData)

  y_h <- predict(bayesClass2, processedData[rows, ], type = c("class"))
  AUC <- append(roc(y_h, as.numeric(second_date[rows]))$auc, AUC)
}

#Summary Statistics
summaryStatistics(AUC)

When executing the preceding code, we see the following results:

Mean       Std.Dev     Min        Max        Range
0.8323727  0.03168166  0.7692308  0.9107143  0.1414835

Here we observe that this distribution contains the highest mean and minimum, 
with moderate results with respect to range and standard deviation. When choosing 
between the two data sets, I would argue for using the second subset in this instance 
due to the superior AUC score performance on average—and given the fact that at a 
minimum, we can still expect a higher score.

The importance of this technique lies in the fact that it is an effective method by 
which you can fit superior models on subsets of data. This will be extremely handy if you 
find you have a data set that is smaller than you would like. There are times when you can 
find yourself stuck trying to tweak a model whose performance is slightly unsatisfactory, 
despite using proper cross-validation techniques, data preprocessing techniques, and 
parameter tuning techniques. In instances where this is due to lack of data, this technique 

http://dx.doi.org/10.1007/978-1-4842-2734-3_10
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would be the first I tried to use prior to trying to acquire more data. As for the final step in 
our experiment, let’s use the fitted models and see how they perform out of sample:

#Fitted Models and Out of Sample Performance
AUC1 <- AUC2 <- c()

for (i in 1:100){
  rows <- sample(1:nrow(processedData), 92)
  y_h1 <- predict(bayesClass1, processedData[-rows,], type = c("class"))
  y_h2 <- predict(bayesClass2, processedData[-rows,], type = c("class"))
  AUC1 <- append(roc(y_h1, as.numeric(second_date[-rows]))$auc, AUC1)
  AUC2 <- append(roc(y_h2, as.numeric(second_date[-rows]))$auc, AUC2)
}
summaryStatistics(AUC1)
summaryStatistics(AUC2)

When executing the preceding code, we see the results for the model fitted against 
the subset without and with only anomalies respectively in Figures 11-4 and 11-5:

Mean       Std.Dev     Min        Max        Range
0.7890102  0.01468805  0.75       0.8194444  0.06944444
Mean       Std.Dev     Min        Max        Range
0.8303613  0.01506222  0.7957983  0.8688836  0.07308532

Figure 11-4. ROC curve for Bayes model without anomalies (AUC : 0.7821)
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When reviewing the results from our experiment, it has become abundantly clear 
that the second model, fitted with only anomalies, produces a markedly better model 
than the model fit with observations that aren’t anomalies. But before we become entirely 
convinced that we should use the second model, let’s quickly perform a two-sided 
hypothesis test on using data from both of these models.

Being that we sampled our results 100 times, we can safely use a Z-test. As such, we 
set the Z-test parameters as shown in the following code:

#Two Sided Hypothesis Test
require(BSDA)

z.test(x = AUC1, y = AUC2, alternative = "two.sided", mu = mean(AUC2) - mean(AUC1),
                 conf.level = 0.99, sigma.x = sd(AUC1), sigma.y = sd(AUC2))

Figure 11-5. ROC curve for Bayes model w/o anomalies (AUC: 0.8188)
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Statistically, within a 99% confidence interval, we have determined that the results of 
the two models are statistically different from one another and therefore we can confidently 
choose the second Bayesian model fitted, knowing that it is the superior model.

Convolutional Neural Networks
When I discussed CNNs in Chapter 5, I showed the power of this model by discussing the 
MNIST digit recognition use case. Although that was at one point the primary use case 
of CNNs, they are now currently being used for increasingly more difficult and complex 
tasks. Now I’d like to explore a use case in which we’re trying to distinguish between 
different objects of significantly more complexity than handwritten digits. In this tutorial, 
we’ll be using the Caltech 101 dataset, which contains 101 object categories with between 
60 and 800 images in each category. We’ll take various images from each category, doing 
so in such a way that we get diversity of images without picking starkly different pictures. 
We’ll be choosing between images of guitars and laptops. Sample of theses photos are 
shown in Figures 11-7 and 11-8.

Figure 11-6. Two-sided hypothesis test results

When executing the preceding function, it yields the output shown in Figure 11-6.

http://dx.doi.org/10.1007/978-1-4842-2734-3_5
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Figure 11-7. Photo of guitar

Figure 11-8. Photo of laptop
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Figure 11-9. List of files from image directory

These images are pieces of technology, but they’re distinctly different from each 
other in such a way that we would expect a human to be able to distinguish them. Let’s 
now discuss how we should prepare our data for the CNNs.

Preprocessing
Working with image files requires a particular type of preprocessing that we haven’t 
discussed in detail yet, mainly because image recognition and computer vision is a very 
specific subfield of computer science. It would be wise to seek other texts to build upon 
your understanding of computer vision, but this passage will give you a basic overview. 
We’re working with color images, each with dimension x, y, z, where x and y are specific 
to each photo but z is always 3. Image files, insofar as a computer understands them, are 
three layers of matrices stacked on top of each other, with each pixel being an individual 
entry in that matrix. For this task, I recommend you use the EBImage package so you can 
grayscale and resize images. To help with the training time of the neural network, we’ll be 
resizing images so they’re smaller, and therefore the neural network takes in less data. But 
let’s walk through our preprocessing step by step:

#Loading required packages
require(mxnet)
require(EBImage)
require(jpeg)
require(pROC)

#Downloading the strings of the image files in each directory
guitar_photos <- list.files("/file/path/to/image")
laptop_photos <- list.files("/file/path/to/image")

The Caltech library is organized into directories with multiple levels, so be mindful 
when trying to access these images in an automated fashion. All the directories for 
each category have the same format for the filenames: the image file is denoted as 
image_000,X, where X is the number of the image in the directory. But each directory 
has a different number of files, so we should use the list.files() function to collect the 
names of all the image files within the directories. We use them in the following section of 
code. The contents of the guitar photos directory when using the list.files() function 
are shown in a truncated form in Figure 11-9.
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Now that we have the names of the individual files, we can load them into the  
img_data data frame using the following process:

#Creating Empty Data Frame
img_data <- data.frame()

#Turning Photos into Bitmaps
#Guitar Bitmaps
for (i in 1:length(bass_photos)){
  img <- readJPEG(paste("/path/to/image/directory/", guitar_photos[i], sep = ""))

We use the paste function here to combine the directory with the image with 
the string such that it leads us to the data. Using the readJPEG() function from the 
jpeg package, we can read the image into a bitmap, as described earlier as the stack of 
matrices. Each dimension represents the three colors (red, blue, and green) that make 
up every color photo. But to reduce the complexity of the images we’re working with, 
we’re going to convert these images to greyscale (black and white). When working with 
black and white images, we assign the pixel values a number between 0 and 1, with 0 
representing black and 1 representing white. The colors in between determine the degree 
of intensity toward either side of the spectrum a particular color:

#Reshape to 64x64 pixel size and grayscale image
img <- Image(img, dim = c(64, 64), color = "grayscale")

#Resizing Image to 28x28 Pixel Size
img <- resize(img, w = 28, h = 28)
img <- img@.Data

We perform the reshaping and resizing of various images using the resize() 
function provided in EBImage. If you’re interested in viewing what images look like when 
they’re grayscaled, feel free to experiment with the display() and Image() functions 
accordingly. After the image is resized, we take the bitmap and convert it into a vector for 
a better storage method. Finally, we must add a label to the vector of data for when we’re 
creating and training a model. This will be useful when calculating the accuracy of our 
model. Specifically, guitars will be labeled as 1 and laptops will be labeled as 2:

  #Transforming to vector
  img <- as.vector(t(img))

  #Adding Label
  label <- 1

  img <- c(label, img)

  #Appending to List
 img_data <- rbind(img_data, img)

}
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We repeat this process for the laptop images. If you want to use this structure of 
preprocessing and model evaluation, feel free to do so—or experiment with alternative 
preprocessing methods. Prior to creating the CNN model, we must ensure that the input 
format for the model is correct. MXNet and many neural network models have specific 
formats that you should be familiar with. The first step is to create a training and test 
set. For this example, we’ll be splitting the data set such that we train against 75% of the 
data and test against the remaining 25%. We now will transform the data such that it 
was a matrix in which each row was a different image observation, with the label as the 
first column entry and the bitmap values as the successive column entries. We’ll then 
strip the label from the X matrix and use this as the values in the corresponding order 
of observations for the y vector. We then perform cross-validation using the sample() 
function:

#Transforming data into matrix for input into CNN
training_set <- data.matrix(img_data)

#Cross Validating Results
rows <- sample(1:nrow(training_set), nrow(training_set)*.75)

#Training Set
x_train <- t(training_set[rows, -1])
y_train <- training_set[rows, 1]
dim(x_train) <- c(28,28, 1, ncol(x_train))

In the preceding code, it’s important to point out a distinct detail that if omitted will 
prevent you from being able to execute your code. The MXNet CNN model only takes 
an X matrix that is 4 dimensions. Be sure to remember this—otherwise you’ll waste time 
debugging this issue! We also alter the dimensions of the test set accordingly:

#Test Set
x_test <- t(training_set[-rows, -1])
y_test <- training_set[-rows, 1];
dim(x_test) <- c(28,28, 1, ncol(x_test))

Now that we’ve finished preprocessing our data, we can finally begin to build and 
train our model.

Model Building and Training
CNN models are built in such a way that the data passes through each layer, but the only 
layer that’s actually inputted to the FeedForward() function is the final layer. So we build 
the model prior to it being activated here. Some packages might be more proprietary and 
require less architecture, but MXNet allows for a significant degree of customization that 
would be useful if you would like to construct different ConvNet structures, such as those 
elaborated upon in Chapter 5. If you would like to improve upon the results here, that 
may be a good use of your time.

http://dx.doi.org/10.1007/978-1-4842-2734-3_5
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Let’s move to the architecture. We’ll be using a generic LeNet architecture here,  
as is the standard for image recognition tasks. As such, we organize the layers in the same 
manner:

data <- mx.symbol.Variable('data')

#Layer 1
convolution_l1 <- mx.symbol.Convolution(data = data, kernel = c(5,5),  
num_filter = 20)
tanh_l1 <- mx.symbol.Activation(data = convolution_l1, act_type = "tanh")
pooling_l1 <- mx.symbol.Pooling(data = tanh_l1, pool_type = "max", kernel = 
c(2,2), stride = c(2,2))

#Layer 2
convolution_l2 <- mx.symbol.Convolution(data = pooling_l1, kernel = c(5,5), 
num_filter = 20)
tanh_l2 <- mx.symbol.Activation(data = convolution_l2, act_type = "tanh")
pooling_l2 <- mx.symbol.Pooling(data = tanh_l2, pool_type = "max",  
kernel = c(2,2), stride = c(2,2))

We first start by creating a dummy data variable that will be used to pass the x 
matrix values in a file format friendly to the ConvNet here. data passes through each 
layer, as discussed in Chapter 5, where the model builds from lower abstractions to 
higher abstractions of the data to make a determination. Here, we will use a stride of 2 
as generally recommended, 20 filters in the first Conv layer, and 50 filters in the second 
Conv layer. As an activation function, we use tanh. This activation function will be held 
constant throughout the entire model with the exception of the output function:

#Fully Connected 1
fl <- mx.symbol.Flatten(data = pooling_l2)
full_conn1 <- mx.symbol.FullyConnected(data = fl, num_hidden = 500)
tanh_l3 <- mx.symbol.Activation(data = full_conn1, act_type = "tanh")

#Fully Connected 2
full_conn2 <- mx.symbol.FullyConnected(data = tanh_l3, num_hidden = 40)

#Softmax Classification Layer
CNN <- mx.symbol.SoftmaxOutput(data = full_conn2)

The data continues to pass to the fully connected layers. Respectively, there are 500 
and 40 hidden neurons in the fully connected layers. Finally, the data reaches the last 
layer, where we have a softmax classifier to determine the class of the observations.

http://dx.doi.org/10.1007/978-1-4842-2734-3_5
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Before we make any predictions, though, we must train our parameters using 
the method suggested in the previous section. When possible, particularly in the 
case of neural networks, using a local search method for packages that support these 
functionalities is highly recommended. Specifically, h2o supports a grid search function 
to tune parameters. Although here we’re using MXNet, it’s useful for readers to be aware 
of packages that do provide these functionalities.

Let’s begin by training the parameters:

#Learning Rate Parameter
AUC <- c()
learn_rate <- c(0.01, 0.02, 0.03, 0.04)
CPU <- mx.cpu()

for (i in 1:length(learn_rate)){
   cnn_model <- mx.model.FeedForward.create(CNN, X = x_train,  
y = y_train, ctx = CPU, num.round = 50, array.batch.size = 40,

learning.rate = learn_rate[i],
momentum = 0.9, eval.metric = mx.metric.accuracy,
epoch.end.callback = mx.callback.log.train.metric(100),
 optimizer = "sgd")
#Code redated partially, please check github!

Similar to other neural network models, the learning rate parameter determines the 
magnitude of the gradient in updating the weights connecting the layers to each other. We 
give an array and plot the AUC, with respect to the tuning parameter in Figure 11-10.
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We can clearly see that a learning rate of 0.04 here is the most optimal because it 
yields the highest AUC score.

Let’s now train the momentum parameter:

AUC1 <- c()
mom <- c(0.5, 0.9, 1.5)
for (i in 1:length(mom)){
cnn_model <- mx.model.FeedForward.create(CNN, X = x_train, y = y_train, ctx 
= CPU, num.round = 50, array.batch.size = 40, learning.rate = 0.04,
momentum = mom[i], eval.metric = mx.metric.accuracy,
epoch.end.callback = mx.callback.log.train.metric(100), optimizer = "sgd")
#Code redacted partially, please check github!

Figure 11-10. AUC score over learning rate
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When we execute the preceding code, we receive the results shown in Figure 11-11.

Figure 11-11. AUC over momentum value

When evaluating the results from the different parameters, we shall set the 
momentum value as 0.9. Now that we’ve tuned these two parameters, we can start 
training the tuned model in the final section and evaluating its performance on the test 
and training set:

#Fitted Model Training
cnn_model <- mx.model.FeedForward.create(CNN, X = x_train, y = y_train, ctx 
= CPU, num.round = 150, array.batch.size = 40,
learning.rate = 0.04, momentum = 0.9, eval.metric = mx.metric.accuracy,
initializer = mx.init.normal(0.01) , optimizer = "sgd")

#Calculating Training Set Accuracy
y_h <- predict(cnn_model, x_train)
Labels <- max.col(t(y_h)) - 1
roc(as.factor(y_train), as.numeric(Labels))
curve <- roc(as.factor(y_train), as.numeric(Labels))
#Code partially redacted, please check github!
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Before executing the code, I would like to point out one detail. Here, we have not 
enabled GPU training. If you want to decrease training time and improve computational 
performance, look into the necessary steps in the MXNet documentation to enable this 
feature. For this example, we’ll be using CPU training. You should also be aware that 
the temptation to increase the num.round parameter will often be strong, as this will 
directly affect the accuracy of the model on the training set data. Beware that setting this 
parameter too high will cause overfitting, particularly on a data set the size of the one 
we’re using in this example. When executing the preceding code, the user should see the 
terminal printing out the training accuracy in a format such as the following:

[184] Train-accuracy=0.708333333333333
[185] Train-accuracy=0.708333333333333
[186] Train-accuracy=0.708333333333333
[187] Train-accuracy=0.708333333333333
[188] Train-accuracy=0.708333333333333

The number on the left side of the words Train-accuracy represents the current 
iteration, which will run until the number indicated in the num.round parameter. The 
accuracy parameter used here is equivalent to the AUC score and is given by the  
mx.metric.accuracy object. As always, learning rates are difficult to approximate, but we 
can mitigate the loss of accuracy by adjusting the weights within the neural network using 
the stochastic gradient descent optimizer. When executing the code, we yield Figure 11-12.
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This ROC plot has an AUC of 0.7706. When assessing the performance on the test 
data, Figure 11-13 and results are yielded.

Figure 11-12. ROC plot for CNN over training data
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The model when predicting against the test data has an AUC of 0.7063. Roughly 
speaking, the performance here is considerably similar, although as expected we do notice 
a drop-off in performance from the training to test set. That said, it’s unlikely even in this 
instance that there is any indication of overfitting. However, you might still be inclined to 
improve the performance of these models should you want to put something like this into 
production. Ideally, when classifying images, we would like to have models that perform 
with at least 90% accuracy. Although the image classification case here is rather benign, 
there are cases in which incorrect classifications can lose considerable amounts of money 
per observation or cause incorrect diagnoses that therefore cause patients to receive 
improper care. With this in mind, how would you proceed from this point?

The most logical next step would be to acquire more data for the training phase of this 
model. This is typically what we would consider the largest challenge of building sufficient 
convolutional neural networks: getting enough training data. For many different commercial 
products, acquisition of this data legally can prove an exhaustive task and in a worst-case 
scenario would require acquisition of the data by the team itself in the real world. Readers 
should be mindful of this when creating CNNs for specific tasks, because sometimes the 
feasibility of the task is purely a matter of how accessible the data is. In this instance, the data 
set we’re using is roughly only in total 170 photos, of which we train over 75%.

Figure 11-13. ROC plot for CNN over test data
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Another suggestion you might want to take note of is using another network 
architecture, or if you feel ambitious enough, trying to create your own. However, creating 
your own network architecture can be an extremely daunting task. Another possible 
avenue to explore is creating several convolutional neural networks. From these models, 
we can create a data set where each feature is the output of a given CNN. This data 
set could then be inputted into a traditional machine learning model. You should be 
conscious, though, that these approaches might in an of themselves require significant 
tuning of the approach outlined earlier.

Collaborative Filtering
For our final example, we’ll be briefly tackling the problem of recommendation systems 
as was briefly addressed in prior chapters. Recommendation systems are constantly 
evolving, but it’s useful to address the concept because of the application of data science 
within them. It’s here that you’ll be introduced to the practical applications of imputation 
in addition to some of the soft skills of data science such as data transformation that have 
been briefly addressed but never walked through.

Recommendation systems are particular to e-commerce websites like Amazon.
com but are also present in content-based sites such as Netflix. The motivation is fairly 
straightforward in that it is reasonable to recommend products to customers that they 
would reasonably like. The task of doing so is more difficult than it seems, though. Most 
users don’t use the entirety of all products offered by a given company. Even if they did, 
it doesn’t mean they would rate every single product they used. That leaves us with the 
problem of having a matrix that is sparsely populated with values. Nevertheless, we’ve 
reviewed techniques to handle this and will be moving on to inspecting our data set.

For this experiment, we’ll be using the third Jester data set (http://goldberg.
berkeley.edu/jester-data/). The features all represent individual jokes, and the rows 
represent users. Each entry within the matrix is a rating for a joke, where the lower bound 
is –10 and the upper bound is 10. However, whenever there isn’t an entry for a joke, this is 
represented by a 99. When inspecting the head of the data set, we see the matrix shown in 
Figure 11-14.

Figure 11-14. Snapshot of the Jester data set 

http://goldberg.berkeley.edu/jester-data/
http://goldberg.berkeley.edu/jester-data/
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The goal here will be to measure the similarity of different users’ tastes based on 
the similarities between the jokes themselves. To do this, we’ll be calculating the cosine 
similarity between column vectors. Briefly, let’s discuss the concept of cosine similarity 
before speaking about combining matrix factorization and RBMs to impute missing 
values. When working with problems in which you’re trying to compare vectors, cosine 
similarity is a concept that will often be referenced. Intuitively, we define cosine similarity 
as the degree to which two non-zero vectors are distinct. Mathematically, we define 
cosine similarity with the following equation

similarity = ( ) = ∗
cos θ A B

A B
2 2

where A, B = two distinct vectors.
Similarly to a correlation coefficient, cosine similarity values range from –1 to 1. A 

cosine similarity of 1 indicates that values are exactly the same, whereas –1 means they 
are exactly opposite. A value of zero indicates no relationship between vectors at all. With 
this in mind, we’ll compare the consumption patterns of certain music with one another 
such that we can compare which items are most like each other and therefore should be 
recommended to other individuals.

However, for those who paid close attention, cosine similarity is used with two  
non-zero vectors—meaning we have to generate values for our dataset where they 
are missing. There are many techniques that have been discussed for imputation, but 
one that has been described as useful by Geoffrey Hinton in this instance is matrix 
factorization. Specifically, I suggest you use singular value decomposition (SVD).

SVD and PCA, discussed elsewhere in this book, are highly related techniques. They 
both are perform eigendecompositions of a matrix, but SVDs applications differ from that 
of PCA. Particularly, SVD can be used to approximate the missing values. As such, let’s 
impute our values using the impute.svd() function:

require(lsa)
require(bcv)
require(gdata)
require(Matrix)

#Upload the data set
#Please be patient this may take a handful of seconds to load.
data <- read.xls("/path/to/data/.xls", sheet = 1)
colnames(data) <- seq(1, ncol(data), 1)

#Converting 99s to NA Values (1)
data[data == 99] <- NA

#Converting 99s to Mean Column Values (2)
for (i in 1:ncol(data)){
  data[is.na(data[,i]), i] <- mean(data[,i], na.rm = TRUE)
}
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We begin by converting the 99s (1) to NA values and then changing the NA values to 
the column means (2). After this point, we can move forward and impute the values:

#Imputing Data via SVD
newData <- impute.svd(data, k = qr(data)$rank, tol = 1e-4, maxiter = 200)
print(newData$rss)
head(data[, 2:10])

Be aware that the impute.svd() function requires that you impute either column 
means for the missing values, or if an entire column’s observations are missing to make it 0. 
If you don’t follow these instructions, you’ll receive incorrect results. When executing the 
preceding code, we yield the outputs shown in Figure 11-15.

Figure 11-15. Head of imputed data set

When executing the SVD, we also calculated a sum of squares of 4.398197e-20 with 
respect to the non-missing values and the predictions of these non-missing values. 
Readers who feel inclined to challenge themselves here can, instead of using SVD impute 
the values, use an RBM. Be aware, though, that this task can be extremely computationally 
expensive, and the modification of the RBM for this task is not easy. Look for high-level 
overviews given by Geoffrey Hinton on this topic (http://www.machinelearning.org/
proceedings/icml2007/papers/407.pdf).

We can now calculate the cosine distances between the columns:

itemData <- matrix(NA, nrow = ncol(data), ncol = 11,
                   dimnames=list(colnames(data)))
#Getting Cosine Distances
for (i in 1:nrow(itemData)){
  for (j in 1:ncol(itemData)){
    itemData[i,j] <- cosine(data[,i], data[,j])
  }
}

http://www.machinelearning.org/proceedings/icml2007/papers/407.pdf
http://www.machinelearning.org/proceedings/icml2007/papers/407.pdf
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When executing the preceding code, we yield the data set shown in Figure 11-16.

Figure 11-17. Top 10 recommendations for 11 separate jokes

Figure 11-16. Head of the cosine distance data set

From this data set, we can now perform the final data transformation such that each 
row represents a particular joke and each column represents the jokes most similar in 
descending order from left to right. We do this initially by instantiating an empty  
matrix with the proper dimensions (1). After this matrix is instantiated, we can then fill 
in the data by sorting the cosine values and taking the indices that contain the top 11 
values—we take the top 11 because the number 1 value will always be the same item itself:

#Creating Matrix for ranking similarities (1)
similarMat <- matrix(NA, nrow = ncol(itemData), ncol = 11)

#Sorting Data Within Item Data Matrix (2)
for(i in 1:ncol(itemData)) {
  rows <- order(itemData[,i], decreasing = TRUE)
  similarMat[i,] <- (t(head(n=11, rownames(data[rows ,][i]))))
}

#Printing Result
similarMat

When executing the preceding code, we reach our final answer, shown in Figure 11-17.
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We interpret the result as yielding the top 10 recommendations for 11 separate 
jokes. You can implement this in a platform such that on a web page, users receive 
recommendations for different pages, products, and or similar entities.

Summary
We now have reached the end of this chapter and our review of deep learning and 
machine learning techniques entirely. Chapter 12 provides brief advice that all data 
scientists should be aware of as they move forward in their research or professional 
endeavors.

http://dx.doi.org/10.1007/978-1-4842-2734-3_12
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CHAPTER 12

Closing Statements

We have reached the end of this book. By now, you should feel comfortable that you’ve 
acquired a general overview of data science, machine learning, and deep learning. If 
not, you should at least be adequately aware of where you need to focus your efforts in 
reviewing and further research. The purpose of this book is not intended to make anyone 
an expert. Rather it should be used to highlight the respective power of these techniques 
in a given field. I would like to end by imparting advice for all readers with my thoughts 
on the best way to use these models and the general methodology of machine learning.

In every field, there are idiosyncratic characteristics that have long been studied. 
This is generally what I would describe as the science of X, where X is a given field we’re 
discussing. Sometimes specific quantitative subfields have been developed within the 
broader field to tackle these goals. Given the complex nature of the world, it can’t be 
overemphasized that studying the broader field and the specific subfield you’re interested 
holistically is a requirement before you seek to implement machine learning methods to 
problem solving. Among the complaints I have heard from many colleagues and friends 
is that there is one overwhelming deficiency that many data scientists often have: domain 
knowledge. Machine learning and deep learning algorithms have gotten very good at 
performing in a variety of contexts and increasingly have been able to produce robust 
solutions. however, using a good tool poorly in a given context can produce results just as 
bad, if not worse, as using the wrong tool poorly in a given context.

You should be sure that you deeply understand the algorithms you choose prior to 
implementing them at scale. There is seldom anything worse than providing a solution, 
seeing the process for it fail, and being unable to provide counsel on how to fix it. Beyond 
something bad happening, often you’ll be expected to discuss these algorithms with 
people who have less technical backgrounds. Although I have emphasized this in prior 
chapters, I must again state the power of good visualizations and succinct explanations. 
Although you might find intricate detail compelling, the average person doesn’t have 
the time that you have spent educating yourself on this topic. So, only make things as 
complicated as they need to be.

Finally, I urge you when producing your own solutions to be as creative as possible. 
The proliferation of machine learning algorithms is exciting for the way in which it 
revolutionizes our world, but it will also lead to great homogeneity among products 
if these algorithms aren’t used in a unique way. The process of solving problems, 
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while frustrating at times, should be challenging and exciting also. This should be an 
opportunity to use your ingenuity to create a unique solution—not use old and tired 
solutions. Reusing large portions of code, though tempting and often necessary to save 
time in the development stage, should be avoided as much as possible as well. Always 
force yourself to approach a problem from scratch, because that will inspire new and 
hopefully better solutions.

I wish all readers the best of success moving forward in their respective studies 
and careers, and also in life. Machine learning is one of the most frustrating concepts I 
have ever encountered, but through studying it I’ve learned an incredible amount about 
computer science and myself while also being introduced to an immense amount of 
incredibly intelligent individuals. I hope that the joy that has been brought into my life 
from studying this field is similarly brought to yours Godspeed.

Sincerely,
Taweh Beysolow II
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